document.write( "Question 1207192: given the system of equations 2x-3y-9z=20 x+3z=-2 -3x+y-4z=-2 find the complete solution write x and y as functions of z \n" ); document.write( "
Algebra.Com's Answer #844930 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\"system%282x-3y-9z=20%2Cx%2B3z=-2%2C+-3x%2By-4z=-2%29\"
\n" ); document.write( "is equivalent to
\n" ); document.write( "\"system%282x-3y-9z=20%2C1x%2B0y%2B3z=-2%2C+-3x%2B1y-4z=-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "That system converts to this augmented matrix.
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
2-3-920
103-2
-31-4-2

\n" ); document.write( "Normally the grid lines aren't present to separate each item. But I decided to make it into a table format.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's apply Gauss Jordan Elimination to get the matrix into Reduced Row Echelon Form (RREF).
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
2-3-920
103-2
-31-4-2
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
103-2R1 <--> R2
2-3-920
-31-4-2
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
103-2
0-3-1524R2 - 2*R1 --> R2
-31-4-2
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
103-2
0-3-1524
015-8R3 + 3*R1 --> R3
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
103-2
015-8R2 <--> R3
0-3-1524
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
103-2
015-8
0000R3 + 3*R2 --> R3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here is a step-by-step calculator that is very useful to row reduce matrices
\n" ); document.write( "http://www.math.odu.edu/~bogacki/lat/
\n" ); document.write( "It is called \"linear algebra toolkit\".
\n" ); document.write( "Click the \"Enter\" link and then go to \"Row operation calculator\". Let me know if you have any questions about this calculator. \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "More practice with gauss-jordan elimination
\n" ); document.write( "https://www.algebra.com/algebra/homework/coordinate/Linear-systems.faq.question.1203611.html\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To briefly summarize, we have gone from this matrix
\n" ); document.write( "\"%28matrix%283%2C4%2C2%2C-3%2C-9%2C20%2C1%2C0%2C3%2C-2%2C-3%2C1%2C-4%2C-2%29%29\"
\n" ); document.write( "to this matrix
\n" ); document.write( "\"%28matrix%283%2C4%2C1%2C0%2C3%2C-2%2C0%2C1%2C5%2C-8%2C0%2C0%2C0%2C0%29%29\"
\n" ); document.write( "The row of all zeros tells us that we will have infinitely many solutions. This system is consistent and dependent.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The 2nd matrix converts back to this system
\n" ); document.write( "\"system%28x%2B3z=-2%2Cy%2B5z=-8%29\"
\n" ); document.write( "and this is what results when we get each z term to the other side
\n" ); document.write( "\"system%28x=-3z-2%2Cy=-5z-8%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore each of the infinitely many solutions are of the form (x,y,z) = (-3z-2,-5z-8,z) where z is any real number.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Examples:
\n" ); document.write( "If z = 0 then (x,y,z) = (-3z-2,-5z-8,z)= (-3*0-2,-5*0-8,0) = (-2,-8,0) is a solution
\n" ); document.write( "If z = 1 then (x,y,z) = (-3z-2,-5z-8,z)= (-3*1-2,-5*1-8,1) = (-5,-13,1) is a solution
\n" ); document.write( "If z = 2 then (x,y,z) = (-3z-2,-5z-8,z)= (-3*2-2,-5*2-8,2) = (-8,-18,2) is a solution
\n" ); document.write( "If z = 3 then (x,y,z) = (-3z-2,-5z-8,z)= (-3*3-2,-5*3-8,3) = (-11,-23,3) is a solution
\n" ); document.write( "All of these solution points are located on the same straight line.
\n" ); document.write( "
\n" ); document.write( "
\n" );