document.write( "Question 1116320: Calculate
\n" );
document.write( "
\n" );
document.write( "9^563 mod907
\n" );
document.write( "
\n" );
document.write( "Identify which one of the following options gives the correct solution for the above expression ?
\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( " 310
\n" );
document.write( "
\n" );
document.write( " 520
\n" );
document.write( "
\n" );
document.write( "630
\n" );
document.write( "
\n" );
document.write( "493\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "My working:\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "9^563 mod 907\r
\n" );
document.write( "\n" );
document.write( "First I identified the exponents.\r
\n" );
document.write( "\n" );
document.write( "9^1 mod 907
\n" );
document.write( "9^2 mod 907
\n" );
document.write( "9^16 mod 907
\n" );
document.write( "9^32 mod 907
\n" );
document.write( "9^512 mod 907\r
\n" );
document.write( "\n" );
document.write( "(512+32+16+2+1=563)\r
\n" );
document.write( "\n" );
document.write( "9^1 mod 907=9
\n" );
document.write( "9^2 mod 907=81
\n" );
document.write( "9^16 mod 907 =669
\n" );
document.write( "9^32 mod 907 =410
\n" );
document.write( "9^512 mod 907=862\r
\n" );
document.write( "\n" );
document.write( "To show my working between 9^32 mod 907 and 9^512 mod 907\r
\n" );
document.write( "\n" );
document.write( "9^64 mod 907= 410^2 mod 907 =305
\n" );
document.write( "9^128 mod 907=305^2 mod 907=511
\n" );
document.write( "9^256 mod 907 =511^2 mod 907 = 812
\n" );
document.write( "9^512 mod 907= 812^2 mod 907=862\r
\n" );
document.write( "\n" );
document.write( "But I am not sure what is the final step....
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #844300 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Answer: 520\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Work Shown\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's list out the powers of 2. \n" ); document.write( "2^0 = 1 \n" ); document.write( "2^1 = 2 \n" ); document.write( "2^2 = 4 \n" ); document.write( "2^3 = 8 \n" ); document.write( "2^4 = 16 \n" ); document.write( "2^5 = 32 \n" ); document.write( "2^6 = 64 \n" ); document.write( "2^7 = 128 \n" ); document.write( "2^8 = 256 \n" ); document.write( "2^9 = 512 \n" ); document.write( "2^10 = 1024 \n" ); document.write( "etc... \n" ); document.write( "We stop here since we won't go larger than 563.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Subtract off the largest power of 2 that is smaller than 563 or equal to it. \n" ); document.write( "We'll have: \n" ); document.write( "563-512 = 51 \n" ); document.write( "Off to the side somewhere write 512 since we'll be using it later. \n" ); document.write( "Then subtract off the largest power of 2 that is smaller than 51 or equal to it. \n" ); document.write( "So, \n" ); document.write( "51 - 32 = 19 \n" ); document.write( "Write 32 off to the side to join with 512. \n" ); document.write( "We keep this process going until we arrive at 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Here's what the scratch work looks like. \n" ); document.write( "563 - 512 = 51 \n" ); document.write( "51 - 32 = 19 \n" ); document.write( "19 - 16 = 3 \n" ); document.write( "3 - 2 = 1 \n" ); document.write( "1 - 1 = 0 \n" ); document.write( "Those second values on the left hand side can then be reconstructed like this \n" ); document.write( "1+2+16+32+512 = 563 \n" ); document.write( "This is useful for any time we need to convert from base 10 to binary.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It appears that you already know of this trick, but I wrote it out just in case another student is curious. The same applies for the scratch work shown in the next section.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now we'll look at terms of the form 9^(2^n) \n" ); document.write( "In other words we'll look at terms of the form 9^m where m is a power of 2. \n" ); document.write( "Specifically we're interested in the modulus when dividing by 907.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "9^1 = 9 (mod 907) \n" ); document.write( "9^2 = 81 (mod 907) \n" ); document.write( "are fairly straight forward.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Square both sides of the second equation to get: \n" ); document.write( "9^4 = (9^2)^2 = (81)^2 = 6561 = 212 (mod 907) \n" ); document.write( "Note that 6561/907 = 7 remainder 212. We ignore the quotient. The modulus only cares about the remainder. \n" ); document.write( "This idea is applied many times in the scratch work shown below.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll repeatedly square each simplified result to generate the next term we need.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "9^1 = 9 (mod 907) \n" ); document.write( "9^2 = 81 (mod 907) \n" ); document.write( "9^4 = (9^2)^2 = (81)^2 = 6561 = 212 (mod 907) \n" ); document.write( "9^8 = (9^4)^2 = (212)^2 = 44944 = 501 (mod 907) \n" ); document.write( "9^16 = (9^8)^2 = (501)^2 = 251001 = 669 (mod 907) \n" ); document.write( "9^32 = (9^16)^2 = (669)^2 = 447561 = 410 (mod 907) \n" ); document.write( "9^64 = (9^32)^2 = (410)^2 = 168100 = 305 (mod 907) \n" ); document.write( "9^128 = (9^64)^2 = (305)^2 = 93025 = 511 (mod 907) \n" ); document.write( "9^256 = (9^128)^2 = (511)^2 = 261121 = 812 (mod 907) \n" ); document.write( "9^512 = (9^256)^2 = (812)^2 = 659344 = 862 (mod 907)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In short, \n" ); document.write( "9^1 = 9 (mod 907) \n" ); document.write( "9^2 = 81 (mod 907) \n" ); document.write( "9^4 = 212 (mod 907) \n" ); document.write( "9^8 = 501 (mod 907) \n" ); document.write( "9^16 = 669 (mod 907) \n" ); document.write( "9^32 = 410 (mod 907) \n" ); document.write( "9^64 = 305 (mod 907) \n" ); document.write( "9^128 = 511 (mod 907) \n" ); document.write( "9^256 = 812 (mod 907) \n" ); document.write( "9^512 = 862 (mod 907)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's toss out the rows we don't need. \n" ); document.write( "We'll end up with this: \n" ); document.write( "9^1 = 9 (mod 907) \n" ); document.write( "9^2 = 81 (mod 907) \n" ); document.write( "9^16 = 669 (mod 907) \n" ); document.write( "9^32 = 410 (mod 907) \n" ); document.write( "9^512 = 862 (mod 907) \n" ); document.write( "Nice work on getting the correct values so far.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( "9^563 = 9^(1+2+16+32+512) \n" ); document.write( "9^563 = (9^1)*(9^2)*(9^16)*(9^32)*(9^512) \n" ); document.write( "9^563 = (9)*(81)*(669)*(410)*(862) \n" ); document.write( "9^563 = (9*81)*(669*410)*(862) \n" ); document.write( "9^563 = (729)*(274290)*(862) \n" ); document.write( "9^563 = (729)*(376)*(862) (mod 907) \n" ); document.write( "9^563 = (729*376)*(862) (mod 907) \n" ); document.write( "9^563 = 274104*862 (mod 907) \n" ); document.write( "9^563 = 190*862 (mod 907) \n" ); document.write( "9^563 = 163780 (mod 907) \n" ); document.write( "9^563 = 520 (mod 907)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can use a tool like WolframAlpha to confirm the answer.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "More practice is found here \n" ); document.write( " \n" ); document.write( " |