document.write( "Question 1206695: HighTech Inc. randomly tests its employees about company policies. Last year in the 390 random tests conducted, 12 employees failed the test.\r
\n" ); document.write( "\n" ); document.write( "Develop a 95% confidence interval for the proportion of applicants that fail the test. (Round to three decimal places.)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #844294 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "p = population proportion
\n" ); document.write( "phat = sample proportion
\n" ); document.write( "The job of phat is to estimate p.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At 95% confidence, the z critical value is roughly z = 1.96
\n" ); document.write( "This is something to memorize or have on a reference sheet.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You can use a table such as this
\n" ); document.write( "https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
\n" ); document.write( "to determine the z critical values. Look at the bottom row and at the value just above the 95% confidence level.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "What this means is that P(-1.96 < z < 1.96) = 0.95 approximately.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another way to determine this z critical value is to use a stats calculator such as a TI84. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = 390 = sample size
\n" ); document.write( "x = 12 employees failed
\n" ); document.write( "phat = sample proportion of those who failed
\n" ); document.write( "phat = x/n
\n" ); document.write( "phat = 12/390
\n" ); document.write( "phat = 0.03076923 approximately
\n" ); document.write( "Around 3.077% of the sample of employees failed the test.
\n" ); document.write( "This is the center of the confidence interval.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "E = margin of error
\n" ); document.write( "E = z*sqrt(phat*(1-phat)/n)
\n" ); document.write( "E = 1.96*sqrt(0.03076923*(1-0.03076923)/390)
\n" ); document.write( "E = 0.01713940 approximately
\n" ); document.write( "This helps determine how wide or spread out the confidence interval is.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L = lower bound of confidence interval
\n" ); document.write( "L = phat - E
\n" ); document.write( "L = 0.03076923 - 0.01713940
\n" ); document.write( "L = 0.01362983
\n" ); document.write( "L = 0.014\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "U = upper bound of confidence interval
\n" ); document.write( "U = phat + E
\n" ); document.write( "U = 0.03076923 + 0.01713940
\n" ); document.write( "U = 0.04790863
\n" ); document.write( "U = 0.048\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:
\n" ); document.write( "The confidence interval in the format (L, U) would be approximately (0.014, 0.048)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is equivalent to writing 0.014 < p < 0.048 which provides more context of which parameter we're trying to estimate.
\n" ); document.write( "
\n" ); document.write( "
\n" );