document.write( "Question 1206695: HighTech Inc. randomly tests its employees about company policies. Last year in the 390 random tests conducted, 12 employees failed the test.\r
\n" );
document.write( "\n" );
document.write( "Develop a 95% confidence interval for the proportion of applicants that fail the test. (Round to three decimal places.)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #844294 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "p = population proportion \n" ); document.write( "phat = sample proportion \n" ); document.write( "The job of phat is to estimate p.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "At 95% confidence, the z critical value is roughly z = 1.96 \n" ); document.write( "This is something to memorize or have on a reference sheet.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You can use a table such as this \n" ); document.write( "https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf \n" ); document.write( "to determine the z critical values. Look at the bottom row and at the value just above the 95% confidence level.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "What this means is that P(-1.96 < z < 1.96) = 0.95 approximately.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another way to determine this z critical value is to use a stats calculator such as a TI84. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "n = 390 = sample size \n" ); document.write( "x = 12 employees failed \n" ); document.write( "phat = sample proportion of those who failed \n" ); document.write( "phat = x/n \n" ); document.write( "phat = 12/390 \n" ); document.write( "phat = 0.03076923 approximately \n" ); document.write( "Around 3.077% of the sample of employees failed the test. \n" ); document.write( "This is the center of the confidence interval.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "E = margin of error \n" ); document.write( "E = z*sqrt(phat*(1-phat)/n) \n" ); document.write( "E = 1.96*sqrt(0.03076923*(1-0.03076923)/390) \n" ); document.write( "E = 0.01713940 approximately \n" ); document.write( "This helps determine how wide or spread out the confidence interval is.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "L = lower bound of confidence interval \n" ); document.write( "L = phat - E \n" ); document.write( "L = 0.03076923 - 0.01713940 \n" ); document.write( "L = 0.01362983 \n" ); document.write( "L = 0.014\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "U = upper bound of confidence interval \n" ); document.write( "U = phat + E \n" ); document.write( "U = 0.03076923 + 0.01713940 \n" ); document.write( "U = 0.04790863 \n" ); document.write( "U = 0.048\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: \n" ); document.write( "The confidence interval in the format (L, U) would be approximately (0.014, 0.048)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is equivalent to writing 0.014 < p < 0.048 which provides more context of which parameter we're trying to estimate. \n" ); document.write( " \n" ); document.write( " |