document.write( "Question 1206570: Use the probability distribution for the random variable x to answer the question.
\n" );
document.write( "x 0 1 2 3 4 5
\n" );
document.write( "p(x)
\n" );
document.write( "0.25 0.05 0.15 0.2 0.05 0.3
\n" );
document.write( "Find 𝜇,
\n" );
document.write( "𝜎2,
\n" );
document.write( " and 𝜎. (Round your standard deviation to two decimal places.)
\n" );
document.write( "𝜇 = \r
\n" );
document.write( "\n" );
document.write( "𝜎2 = \r
\n" );
document.write( "\n" );
document.write( "𝜎 = \r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #844133 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "𝜇 = mu \n" ); document.write( "𝜎 = sigma\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Given table \n" ); document.write( "
\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Introduce a new row called x*p(x), where you multiply the paired x and p(x) values. \n" ); document.write( "Spreadsheet software is recommended. \n" ); document.write( "
\n" ); document.write( "Add up the x*p(x) values to get the expected value. \n" ); document.write( "mu = mean = expected value = E[X] \n" ); document.write( "mu = sum of the x*p(x) values \n" ); document.write( "mu = 0+0.05+0.3+0.6+0.2+1.5 \n" ); document.write( "mu = 2.65\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll use that value of mu to determine the variance, and by extension, the standard deviation as well.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Introduce a new row called (x-mu)^2*p(x) \n" ); document.write( "The naming should be self-explanatory. If not then please let me know. \n" ); document.write( "Example calculation: if x = 0, then (x-mu)^2*p(x) = (0-2.65)^2*0.25 = 1.755625 \n" ); document.write( "
\n" ); document.write( "sigma^2 = variance \n" ); document.write( "sigma^2 = sum of the (x-mu)^2*p(x) values \n" ); document.write( "sigma^2 = 1.755625+0.136125+0.063375+0.0245+0.091125+1.65675 \n" ); document.write( "sigma^2 = 3.7275\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Side note: another way to find the variance is to compute E[X^2] - (E[X])^2 aka E[X^2] - mu^2 \n" ); document.write( "I'll leave this as an exercise to the reader.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( "sigma = standard deviation \n" ); document.write( "sigma = sqrt( variance ) \n" ); document.write( "sigma = sqrt( 3.7275 ) \n" ); document.write( "sigma = 1.9306735 approximately \n" ); document.write( "When rounding to 2 decimal places we get 1.93\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------- \n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answers: \n" ); document.write( "mu = 2.65 \n" ); document.write( "sigma^2 = 3.7275 \n" ); document.write( "sigma = 1.93 \n" ); document.write( " \n" ); document.write( " |