\r\n" );
document.write( "All candidates for rational solutions must have a numerator which\r\n" );
document.write( "divides evenly into the constant term in absolute value |-21|=21;\r\n" );
document.write( "and whose denominator divides evenly into the absolute value of \r\n" );
document.write( "the leading coefficient |2|=2.\r\n" );
document.write( "\r\n" );
document.write( "candidates for numerators of rational solutions: 1,3,7,21\r\n" );
document.write( " \r\n" );
document.write( "candidates for denominators of rational solutions: 1,2\r\n" );
document.write( "\r\n" );
document.write( "candidates for rational solutions: \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "1/1, 1/2, 3/1, 3/2, 7/1, 7/2, 21/1, 21/2\r\n" );
document.write( "\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( "1, 1/2, 3, 3/2, 7, 7/2, 21, 21/2\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Try 1, using synthetic division:\r\n" );
document.write( "\r\n" );
document.write( "1 | 2 -5 -17 41 -21\r\n" );
document.write( " | 2 -3 -20 21 \r\n" );
document.write( " 2 -3 -20 21 0\r\n" );
document.write( "\r\n" );
document.write( "That factors the left side as\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The 0 on the bottom right tells us that 1 is a rational solution\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Try 1 again in the quotient because it might have multiplicity \r\n" );
document.write( "more than 1.\r\n" );
document.write( "\r\n" );
document.write( "1 | 2 -3 -20 21 \r\n" );
document.write( " | 2 -1 -21 \r\n" );
document.write( " 2 -1 -21 0\r\n" );
document.write( "\r\n" );
document.write( "That factors the left side again as\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Again the 0 on the bottom right tells us that 1 is a second solution\r\n" );
document.write( "of at least multiplicity 2.\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We already know how to finish factoring, for it is a quadratic:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "x-1=0; 2x-7=0; x+3=0\r\n" );
document.write( " x=1; 2x=7; x=-3\r\n" );
document.write( " x=7/2\r\n" );
document.write( "\r\n" );
document.write( "So: \r\n" );
document.write( "1 is a rational solution with multiplicity 2.\r\n" );
document.write( "7/2 is a rational solution with multiplicity of multiplicity 1.\r\n" );
document.write( "-3 is a rational solution with multiplicity of multiplicity 1.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "