document.write( "Question 1206425: Premise:
\n" );
document.write( "1.
\n" );
document.write( "F
\n" );
document.write( "Conclusion:
\n" );
document.write( "(G ⊃ H) ∨ (~G ⊃ J)\r
\n" );
document.write( "\n" );
document.write( "Use either indirect proof or conditional proof (or both) and the eighteen rules of inference to derive the conclusion of the following symbolized argument. \n" );
document.write( "
Algebra.Com's Answer #843960 by mccravyedwin(408) You can put this solution on YOUR website! \r\n" ); document.write( "\r\n" ); document.write( "This student has informed me that she is not allowed to use material\r\n" ); document.write( "implication as I did in the above.\r\n" ); document.write( "\r\n" ); document.write( "(P ⊃ Q) <=> (~P ∨ Q)\r\n" ); document.write( "\r\n" ); document.write( "Why teachers don't just prove this early on is beyond me. It makes\r\n" ); document.write( "proofs a lot simpler. \r\n" ); document.write( "\r\n" ); document.write( "They wouldn't even need to prove equivalence, they could just prove\r\n" ); document.write( "(P ⊃ Q) ⊃ (~P ∨ Q), and that would make lots of proofs easier. It's \r\n" ); document.write( "easy to prove indirectly, anyway.\r\n" ); document.write( "\r\n" ); document.write( "First we prove \r\n" ); document.write( "\r\n" ); document.write( "premise \r\n" ); document.write( "1. P ⊃ Q conclusion ~P ∨ Q \r\n" ); document.write( "\r\n" ); document.write( " |2. ~(~P ∨ Q) Assumption for Indirect Proof\r\n" ); document.write( " |3. ~~P & ~Q 2, DeMorgan's law\r\n" ); document.write( " |4. P & ~Q 3, Double negation\r\n" ); document.write( " |5. P 4, Simplification\r\n" ); document.write( " |6. Q 1,5, Modus Ponens\r\n" ); document.write( " |7. ~Q & P 4, commutation\r\n" ); document.write( " |8. ~Q 7, Simplification\r\n" ); document.write( " |9. Q & ~Q 6,8, Conjunction\r\n" ); document.write( "~P ∨ Q lines 2-9 Indirect proof.\r\n" ); document.write( "\r\n" ); document.write( "Therefore (P ⊃ Q) ⊃ (~P ∨ Q)\r\n" ); document.write( "\r\n" ); document.write( "Now we reverse the conclusion and premise:\r\n" ); document.write( "\r\n" ); document.write( "premise \r\n" ); document.write( "1. ~P ∨ Q conclusion P ⊃ Q \r\n" ); document.write( "\r\n" ); document.write( " |2. P Assumption for Conditional Proof\r\n" ); document.write( " |3. ~~P 2, Double negation\r\n" ); document.write( " |4. Q 1,3, Disjunctive syllogism\r\n" ); document.write( "\r\n" ); document.write( "5. P ⊃ Q lines 2-4 Conditional proof.\r\n" ); document.write( "\r\n" ); document.write( "Therefore (~P ∨ Q) ⊃ (P ⊃ Q)\r\n" ); document.write( "\r\n" ); document.write( "So we have proved\r\n" ); document.write( "\r\n" ); document.write( "[(P ⊃ Q) ⊃ (~P ∨ Q)] & [(~P ∨ Q) ⊃ (P ⊃ Q)]\r\n" ); document.write( "\r\n" ); document.write( "thus they are equivalent. But all we need is the first part,\r\n" ); document.write( "\r\n" ); document.write( "(P ⊃ Q) ⊃ (~P ∨ Q)\r\n" ); document.write( "\r\n" ); document.write( "Edwin \n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |