document.write( "Question 1206425: Premise:
\n" );
document.write( "1.
\n" );
document.write( "F
\n" );
document.write( "Conclusion:
\n" );
document.write( "(G ⊃ H) ∨ (~G ⊃ J)\r
\n" );
document.write( "\n" );
document.write( "Use either indirect proof or conditional proof (or both) and the eighteen rules of inference to derive the conclusion of the following symbolized argument. \n" );
document.write( "
Algebra.Com's Answer #843934 by Edwin McCravy(20063) You can put this solution on YOUR website! \r\n" ); document.write( "\r\n" ); document.write( "I am not sure what symbol you use for conjunction (AND), maybe a dot,\r\n" ); document.write( "but I will use &.\r\n" ); document.write( "\r\n" ); document.write( "Premise:\r\n" ); document.write( "1. F\r\n" ); document.write( "Conclusion:\r\n" ); document.write( "(G ⊃ H) ∨ (~G ⊃ J)\r\n" ); document.write( "\r\n" ); document.write( " | 2. ~[(G ⊃ H) ∨ (~G ⊃ J)] Assumption for Indirect Proof\r\n" ); document.write( "\r\n" ); document.write( " | 3. ~(G ⊃ H) & ~(~G ⊃ J) 2, DeMorgan's Law\r\n" ); document.write( "\r\n" ); document.write( " | 4. ~(~G V H) & ~(~~G ∨ J) 3, Material Implication (twice) \r\n" ); document.write( "\r\n" ); document.write( " | 5. ~(~G V H) & ~(G ∨ J) 4, Double Negation\r\n" ); document.write( "\r\n" ); document.write( " | 6. (~~G & ~H) & (~G & ~J) 5, DeMorgan's Law (twice)\r\n" ); document.write( "\r\n" ); document.write( " | 7. (G & ~H) & (~G & ~J) 6, Double Negation\r\n" ); document.write( "\r\n" ); document.write( " | 8. (G & ~H) & [~G & ~J] 7, Changing () to [] for clarity\r\n" ); document.write( "\r\n" ); document.write( " | 9. [(G & ~H) & ~G] & ~J 8, Association\r\n" ); document.write( "\r\n" ); document.write( " |10. [G & (~H & ~G)] & ~J 9, Association\r\n" ); document.write( "\r\n" ); document.write( " |11. [G & (~G & ~H)] & ~J 10, Commutation\r\n" ); document.write( "\r\n" ); document.write( " |12. [(G & ~G) & ~H] & ~J 11, Association \r\n" ); document.write( "\r\n" ); document.write( " |13. (G & ~G) & [~H & ~J] 12, Association\r\n" ); document.write( "\r\n" ); document.write( " |14. G & ~G 13, Simplification\r\n" ); document.write( "\r\n" ); document.write( "15. F lines 2-14 for Indirect Proof\r\n" ); document.write( "\r\n" ); document.write( "Comment: This is a case where the conclusion is a tautology, and since a\r\n" ); document.write( "tautology is always true, then the conclusion is always true. So regardless\r\n" ); document.write( "of what we are given as premises (in this case only F), the conclusion will\r\n" ); document.write( "always be true. \r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |