document.write( "Question 116018: Describe the transformations on the following graph of f(x)=e^x. \r
\n" );
document.write( "\n" );
document.write( "State the placement of the horizontal asymptote and y-intercept after the transformation. For example, “left 1” or “rotated about the y-axis” are descriptions.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "b) h(x)=e^(-x) \n" );
document.write( "
Algebra.Com's Answer #84388 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Description of transformation:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Looking at \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice if we plug in x=2 into \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice if we plug in x=1 into \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So if we take the opposite of x (to get -x), and plug that into g(x), we'll get the same f(x) answer.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------- \n" ); document.write( "Answer:\r \n" ); document.write( "\n" ); document.write( "So what this does is simply reflect the entire graph over the y-axis\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice if we graph \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and we can visually verify the transformation\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( "Horizontal Asymptote:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since we reflected the graph with respect to the y-axis, the horizontal asymptote of \n" ); document.write( "\n" ); document.write( "---------------------------------- \n" ); document.write( "Answer:\r \n" ); document.write( "\n" ); document.write( "So the horizontal asymptote is \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note: you can visually verify this answer by looking at the graph above\r \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( "y-intercept in (x, y) form:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since the line of symmetry between the two graphs is the line x=0 (ie the y axis), this means that the point that intersects with the y-axis is reflected to itself. So essentially the y-intercept does not change also. Once again, you can visually verify this using the graph above.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------- \n" ); document.write( "Answer:\r \n" ); document.write( "\n" ); document.write( "So the y-intercept is (0,1)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Once again, you can visually verify this answer by looking at the graph above \n" ); document.write( " \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |