document.write( "Question 1148373: The coordinates of the vertices of ∆PQR are P (0,5), Q (5,0), and R (10,5).\r
\n" );
document.write( "\n" );
document.write( "Determine whether ∆PQR is a right triangle.\r
\n" );
document.write( "\n" );
document.write( "Using distance determine if the triangle is an isosceles triangle. \r
\n" );
document.write( "\n" );
document.write( "Show All Work \n" );
document.write( "
Algebra.Com's Answer #843785 by mananth(16946)![]() ![]() You can put this solution on YOUR website! The coordinates of the vertices of ∆PQR are P (0,5), Q (5,0), and R (10,5). \n" ); document.write( "Determine whether ∆PQR is a right triangle. \n" ); document.write( "Using distance determine if the triangle is an isosceles triangle. \n" ); document.write( "Show All Work\r \n" ); document.write( "\n" ); document.write( "d(PQ) =sqrt((5-0)^2+(0-5)^2) = 5sqrt(2)\r \n" ); document.write( "\n" ); document.write( "d(QR) =sqrt((5-10)^2+(0-5)^2) = 5SQRT(2)\r \n" ); document.write( "\n" ); document.write( "d(PR)=sqrt((0-10)^2+(5-5)^2) =10\r \n" ); document.write( "\n" ); document.write( "Check \r \n" ); document.write( "\n" ); document.write( "(5sqrt(2))^2+(5sqrt(2))^2=100 \n" ); document.write( "sqrt(100)=10 PR is hypotenuse hence right triangle\r \n" ); document.write( "\n" ); document.write( "Two sides are equal so its isoscles triangle\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |