document.write( "Question 1148373: The coordinates of the vertices of ∆PQR are P (0,5), Q (5,0), and R (10,5).\r
\n" ); document.write( "\n" ); document.write( "Determine whether ∆PQR is a right triangle.\r
\n" ); document.write( "\n" ); document.write( "Using distance determine if the triangle is an isosceles triangle. \r
\n" ); document.write( "\n" ); document.write( "Show All Work
\n" ); document.write( "

Algebra.Com's Answer #843785 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
The coordinates of the vertices of ∆PQR are P (0,5), Q (5,0), and R (10,5).
\n" ); document.write( "Determine whether ∆PQR is a right triangle.
\n" ); document.write( "Using distance determine if the triangle is an isosceles triangle.
\n" ); document.write( "Show All Work\r
\n" ); document.write( "\n" ); document.write( "d(PQ) =sqrt((5-0)^2+(0-5)^2) = 5sqrt(2)\r
\n" ); document.write( "\n" ); document.write( "d(QR) =sqrt((5-10)^2+(0-5)^2) = 5SQRT(2)\r
\n" ); document.write( "\n" ); document.write( "d(PR)=sqrt((0-10)^2+(5-5)^2) =10\r
\n" ); document.write( "\n" ); document.write( "Check \r
\n" ); document.write( "\n" ); document.write( "(5sqrt(2))^2+(5sqrt(2))^2=100
\n" ); document.write( "sqrt(100)=10 PR is hypotenuse hence right triangle\r
\n" ); document.write( "\n" ); document.write( "Two sides are equal so its isoscles triangle\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );