document.write( "Question 1124692: Find the equation of the perpendicular bisector of the segment AB, if A(1, 2) and B(�3, 4). If the perpendicular bisector of AB intercepts the x-axis at point P, what are the lengths of PA and PB?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #843669 by mananth(16946)![]() ![]() You can put this solution on YOUR website! Let the intersection at X axis be (0,y)\r \n" ); document.write( "\n" ); document.write( "PA =PB Any point on the perpendicular bisector is equidistant from the endpoints\r \n" ); document.write( "\n" ); document.write( "Distance formula\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "PA^2= PB^2\r \n" ); document.write( "\n" ); document.write( "((1-0)^2+(2-y)^2)= (3-0)^2+(4-y)^2\r \n" ); document.write( "\n" ); document.write( "1+4-4y+y^2=9+16-8y+y^2\r \n" ); document.write( "\n" ); document.write( "rearrange\r \n" ); document.write( "\n" ); document.write( "8y-4y = 25-5\r \n" ); document.write( "\n" ); document.write( "4y = 20 \n" ); document.write( "y= 5\r \n" ); document.write( "\n" ); document.write( "PA^2 =((1-0)^2+(2-5)^2)=10 \n" ); document.write( "PA= sqrt(10)\r \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |