document.write( "Question 1206254: I need help figuring out all the solutions in the interval [0,2pi)
\n" ); document.write( "sin^2(x)+2cos(x)=2
\n" ); document.write( "

Algebra.Com's Answer #843546 by ikleyn(52786)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "I need help figuring out all the solutions in the interval [0,2pi)
\n" ); document.write( "sin^2(x)+2cos(x)=2
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        The idea is to replace  sin^2(x)  by expression which contains  cos(x),  only.\r
\n" ); document.write( "\n" ); document.write( "        Then the entire equation will be relative  cos(x),  and we will be able solve it.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "So, by implementing this idea, we write  sin^2(x) = 1 - cos^2(x).\r\n" );
document.write( "\r\n" );
document.write( "Then the given equation takes the form\r\n" );
document.write( "\r\n" );
document.write( "    (1-cos^2(x)) + 2cos(x) = 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Simplify it\r\n" );
document.write( "\r\n" );
document.write( "    - cos^2(x) + 2cos(x) = 1\r\n" );
document.write( "\r\n" );
document.write( "    cos^2(x) - 2cos(x) + 1 = 0\r\n" );
document.write( "\r\n" );
document.write( "    \"%28cos%28x%29-1%29%5E2\" = 0   --->\r\n" );
document.write( "\r\n" );
document.write( "    cos(x) = 1  --->  x = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  In the given interval, the original equation has a UNIQUE root  x = 0 radians.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );