document.write( "Question 1206128: Write a coordinate proof to show that the segments connecting the midpoints of any quadrilateral form a parallelogram. I think it is simpler to use vectors but not sure if I have to use midpoint formulas. Thank you. \n" ); document.write( "
Algebra.Com's Answer #843370 by greenestamps(13200)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Let the coordinates of the vertices of the quadrilateral be \n" ); document.write( "A(2a,2b) \n" ); document.write( "B(2c,2d) \n" ); document.write( "C(2e,2f) \n" ); document.write( "D(2g,2h) \n" ); document.write( "The midpoints are \n" ); document.write( "AB: P(a+c,b+d) \n" ); document.write( "BC: Q(c+e,d+f) \n" ); document.write( "CD: R(e+g,f+h) \n" ); document.write( "DA: S(g+a,h+b) \n" ); document.write( "Opposite sides PQ and RS have the same slope: \n" ); document.write( "PQ: \n" ); document.write( "RS: \n" ); document.write( "And opposite side QR and PS have the same slope: \n" ); document.write( "QR: \n" ); document.write( "PS: \n" ); document.write( "Both pairs of opposite sides are parallel, making the quadrilateral a parallelogram. \n" ); document.write( " \n" ); document.write( " |