document.write( "Question 1205778: Hi, I have shown my working for the question below, am I on the right track?\r
\n" ); document.write( "\n" ); document.write( "〖Simplify 10〗^241 mod(13) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Fermat’s Little Theorem states:
\n" ); document.write( "a^(p-1)≡1mod(p)\r
\n" ); document.write( "\n" ); document.write( "Substitute:
\n" ); document.write( "10^12≡1mod(13) \r
\n" ); document.write( "\n" ); document.write( "By our multiplication theorem we know that if
\n" ); document.write( "10^12≡1mod(13)
\n" ); document.write( "Then
\n" ); document.write( "10^((12)A)≡(1)^A mod (13) \r
\n" ); document.write( "\n" ); document.write( "We want to get from a power of 12 up to around 241, and 12 x 20 = 240
\n" ); document.write( " 10^(12)(20) ≡1^20 mod(13)
\n" ); document.write( " ≡1mod(13)\r
\n" ); document.write( "\n" ); document.write( "So what we have so far is
\n" ); document.write( "10^241 mod(13)≡10^240×10^1 mod(13)
\n" ); document.write( " ≡1×10mod(13)
\n" ); document.write( " ≡10mod(13)\r
\n" ); document.write( "\n" ); document.write( "When 10^241is divided by 13, the remainder is 10 \r
\n" ); document.write( "\n" ); document.write( "Thank you
\n" ); document.write( "

Algebra.Com's Answer #842810 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "You have the correct line of thinking and correct answer. Nice work.
\n" ); document.write( "This first section basically restates what you mentioned.
\n" ); document.write( "The next two sections will go over other approaches.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Fermat's Little Theorem (FLT)
\n" ); document.write( "
\n" ); document.write( "'a' is an integer
\n" ); document.write( "p is prime\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Special case of FLT
\n" ); document.write( "
\n" ); document.write( "where p is not a factor of 'a' \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Due to the special case of FLT\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Raise both sides to the 20th power\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Use the rule that (a^b)^c = a^(b*c)\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply both sides by 10\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Use the rule that a^b*a^c = a^(b+c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A 2nd approach:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's look at powers of 10^n (mod 13) to see if we can spot any patterns. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " because 100/13 = 7 remainder 9. We only care about the remainder.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " because 90/13 = 6 remainder 12. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " because 120/13 = 9 remainder 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You can keep this process going.
\n" ); document.write( "I'll use a spreadsheet to extend this list. I'm using a command called Mod
\n" ); document.write( "Example: Type in =Mod(100,13) to get 9
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
n10^n mod 13
110
29
312
43
54
61
710
89
912
103

\n" ); document.write( "I'll leave the scratch work for the student to do.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The pattern is 10, 9, 12, 3, 4, 1, 10, 9...
\n" ); document.write( "Once reaching remainder 1, the pattern repeats over again.
\n" ); document.write( "This is simply because 1 times any number is that number. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "There are 6 items in the set {10, 9, 12, 3, 4, 1}
\n" ); document.write( "So this means we'll divide 241 over 6 to look at the remainder (yes it seems a bit strange to change the modulus all of a sudden)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "241/6 = 40 remainder 1
\n" ); document.write( "The remainder 1 means we'll look at the 1st slot of that 6 number repeating pattern. That 1st slot is 10.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore we found another way to determine that
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A 3rd approach:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's look at terms of the form 10^(2^n) where n is a positive integer
\n" ); document.write( "Effectively we're repeatedly squaring powers of 10, since something like 10^4 is the squaring of 10^2; or 10^8 is the squaring of 10^4, etc\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " mentioned in the previous section\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " mentioned in the previous section\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " because 81/13 = 6 remainder 3.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Keep this process going to generate this table
\n" ); document.write( "\n" ); document.write( "\r\n" ); document.write( "\n" ); document.write( "
n2^n10^(2^n) mod 13
129
243
389
4163
5329
6643
71289
82563

\n" ); document.write( "We have a much nicer pattern going on here.
\n" ); document.write( "The remainder is either 9 or 3 depending if n is odd or even in that order.
\n" ); document.write( "Technically a table isn't needed, but it could be nice to have.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This is so we can break 241 into its binary components so to speak.
\n" ); document.write( "Refer to tutorials on how to convert from base 10 to base 2.
\n" ); document.write( "241 base 10 = 11110001 base 2
\n" ); document.write( "241 base 10 = 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 0*2^1 + 1*2^0
\n" ); document.write( "241 base 10 = 1*128 + 1*64 + 1*32 + 1*16 + 0*8 + 0*4 + 0*2 + 1*1
\n" ); document.write( "241 base 10 = 128 + 64 + 32 + 16 + 1
\n" ); document.write( "241 = 128 + 64 + 32 + 16 + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then notice the following computation
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Use the table shown above. For example, 10^128 = 9 (mod 13)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " because 27/13 = 2 remainder 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "FLT is perhaps the best choice since it appears your professor has introduced it and is likely expecting you to use it; however, it's still good practice to be able to tackle problems in various ways.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For more practice, check out this similar question
\n" ); document.write( "https://www.algebra.com/algebra/homework/complex/Complex_Numbers.faq.question.1205936.html
\n" ); document.write( "
\n" ); document.write( "
\n" );