document.write( "Question 1205226: Use natural deduction to derive the conclusion in each problem.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use natural deduction to prove the following logical truth:
\n" ); document.write( "(P ⊃ Q) ≡ [P ⊃ (Q ∨ ∼P)]
\n" ); document.write( "

Algebra.Com's Answer #842197 by math_helper(2461)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "1. (P --> Q) == P --> (Q v ~P) \r
\n" ); document.write( "\n" ); document.write( "// Note to prove A == B, need to show A --> B and B --> A
\n" ); document.write( "// Also note I'm using simplified notation as it is easier to enter\r
\n" ); document.write( "\n" ); document.write( "2. :: P Conditional Proof (CP) assumption #1
\n" ); document.write( "3. :: Q 2,1 Modus Ponens (MP)
\n" ); document.write( "4. :: Q v ~P 3 Addition (ADD)
\n" ); document.write( "5. :: P --> (Q v ~P) 2-4 CP
\n" ); document.write( "6. :: (P --> Q) --> (P --> (Q v ~P)) 1-5 CP\r
\n" ); document.write( "\n" ); document.write( "// Now go the other way
\n" ); document.write( "7. :: P --> (Q v ~P) CP assumption #2
\n" ); document.write( "8. :: P CP assumption #3
\n" ); document.write( "9. :: (Q v ~P) 8,7 MP
\n" ); document.write( "10.:: P --> Q 9 Material Implication (MI)
\n" ); document.write( "11.:: (P --> (Q v ~P)) --> (P --> Q) 7-10 CP
\n" ); document.write( "12.:: (P --> Q) == (P --> (Q v ~P)) 6,11 Material Equivalence (ME)
\n" ); document.write( "13.(P --> Q) == (P --> (Q v ~P)) 2-12 CP\r
\n" ); document.write( "\n" ); document.write( "There may be shorter ways to go, but this is what came to mind. \n" ); document.write( "
\n" );