document.write( "Question 1205289: A cone of height 9cm has a volume of n cm³ and a curved surface area of n cm², find the vertical angle \n" ); document.write( "
Algebra.Com's Answer #841995 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( " ![]() \n" ); document.write( "V = volume of the cone \n" ); document.write( "SA = surface area \n" ); document.write( "LSA = lateral surface area = area of just the curved wall or ceiling \n" ); document.write( "The LSA ignores the area of the flat base.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "r = radius = unknown \n" ); document.write( "h = height = 9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Formulas to memorize or have on a reference sheet \n" ); document.write( "V = (1/3)*pi*r^2*h \n" ); document.write( "LSA = pi*r*sqrt(r^2+h^2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sqrt(r^2+h^2) is the slant height due to the Pythagorean theorem.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug h = 9 into each to get \n" ); document.write( "V = 3pi*r^2 \n" ); document.write( "LSA = pi*r*sqrt(r^2+81)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Those items are both equal to a variable n (just with different units of course). \n" ); document.write( "That allows us to set them equal to one another to solve for variable r.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "V = LSA \n" ); document.write( "3pi*r^2 = pi*r*sqrt(r^2+81) \n" ); document.write( "3pi*r^2 - pi*r*sqrt(r^2+81) = 0 \n" ); document.write( "pi*r*(3r - sqrt(r^2+81)) = 0 \n" ); document.write( "pi*r = 0 or 3r - sqrt(r^2+81) = 0 \n" ); document.write( "r = 0 or 3r - sqrt(r^2+81) = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Ignore r = 0 since it's a trivial solution. \n" ); document.write( "We only consider r > 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3r - sqrt(r^2+81) = 0 \n" ); document.write( "3r = sqrt(r^2+81) \n" ); document.write( "(3r)^2 = (sqrt(r^2+81))^2 \n" ); document.write( "9r^2 = r^2+81 \n" ); document.write( "9r^2-r^2 = 81 \n" ); document.write( "8r^2 = 81 \n" ); document.write( "r^2 = 81/8 \n" ); document.write( "r = sqrt(81/8) \n" ); document.write( "r = 3.1819805 approximately\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The apex angle, or vertex angle, of the cone is the angle at the very top. \n" ); document.write( "Half of this angle is denoted as theta in the diagram.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "theta = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Focus on one of the right triangles. \n" ); document.write( "tan(angle) = opposite/adjacent \n" ); document.write( "tan(theta) = r/h \n" ); document.write( "tan(theta) = 3.1819805/9 \n" ); document.write( "tan(theta) = 0.3535534 \n" ); document.write( "theta = arctan(0.3535534) \n" ); document.write( "theta = 19.4712211 degrees approximately\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This doubles to 2*19.4712211 = 38.9424422 which is also approximate. \n" ); document.write( "Round that value however needed. \n" ); document.write( " \n" ); document.write( " |