Algebra.Com's Answer #841830 by ikleyn(52937)  You can put this solution on YOUR website! . \n" );
document.write( "If 𝛼, 𝛽, 𝛾 (where 𝛼, 𝛽, 𝛾 ≠ 0) are the roots of the equation 𝑥^3 + 𝑝𝑥^2 + 𝑞𝑥 + 𝑟 = 0, \n" );
document.write( "where 𝑝, 𝑞 and 𝑟 (≠ 0) are real numbers, express the following in terms of 𝑝, 𝑞 and 𝑟: \n" );
document.write( "1/𝛼^3 + 1/𝛽^3 + 1/𝛾^3 \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "For simplicity of writing, I will replace , and by \"a\", \"b\" and \"c\".\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So, we are given an equation = 0, where p, q and r (=/=0) are real numbers, \n" );
document.write( "with the roots a, b and c.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "They want we find + + .\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( " Step by step solution\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(a) First, notice that if \"a\" is the solution to polynomial equation = 0, then\r\n" );
document.write( "\r\n" );
document.write( " = 0. (1)\r\n" );
document.write( "\r\n" );
document.write( " Since r =/= 0, the root \"a\" is also not zero, a =/= 0. In equation (1), divide both sides by .\r\n" );
document.write( " You will get then\r\n" );
document.write( "\r\n" );
document.write( " = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " It means that is the root of the cubic polynomial equation\r\n" );
document.write( "\r\n" );
document.write( " = 0. (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Similarly, if \"a\", \"b\" and \"c\" are the roots to equation (1), then , and are the roots\r\n" );
document.write( " of equation (2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(b) OK. It means that if \"a\", \"b\" and \"c\" are the roots of equation (1), = 0,\r\n" );
document.write( "\r\n" );
document.write( " they want we calculate , where d, e, and f are the roots of equation (2), = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(c) Due to Vieta's theorem, if d, e and f are the roots of equation (2), then\r\n" );
document.write( "\r\n" );
document.write( " d + e + f = , d*e + d*f + e*f = , d*e*f = . (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(d) For any real numbers d, e, f, the following identity is valid\r\n" );
document.write( "\r\n" );
document.write( " = + 3*(d+e+f)*(de + df + ef) - 3def. (4)\r\n" );
document.write( "\r\n" );
document.write( " It can be checked / proved by direct calculation.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(e) Now, substitute expressions (3) into (4). You will get then\r\n" );
document.write( "\r\n" );
document.write( " = + - .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " It implies = + - , or\r\n" );
document.write( " \r\n" );
document.write( " = + - .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(f) Thus the problem is just solved, and the ANSWER is:\r\n" );
document.write( "\r\n" );
document.write( " if a, b and c are the roots of equation (1), then + + = + - .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER. If a, b and c are the roots of equation = 0, \r\n" );
document.write( "\r\n" );
document.write( " then + + = + - .\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |