document.write( "Question 1205175: If 𝛼, 𝛽, 𝛾 (where 𝛼, 𝛽, 𝛾 ≠ 0) are the roots of the equation 𝑥
\n" ); document.write( "3 + 𝑝𝑥^2 + 𝑞𝑥 + 𝑟 = 0, where 𝑝, 𝑞
\n" ); document.write( "and 𝑟 (≠ 0) are real numbers, express the following in terms of 𝑝, 𝑞 and 𝑟:
\n" ); document.write( "1/𝛼^3 + 1/𝛽^3 + 1/𝛾^3
\n" ); document.write( "

Algebra.Com's Answer #841830 by ikleyn(52937)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "If 𝛼, 𝛽, 𝛾 (where 𝛼, 𝛽, 𝛾 ≠ 0) are the roots of the equation 𝑥^3 + 𝑝𝑥^2 + 𝑞𝑥 + 𝑟 = 0,
\n" ); document.write( "where 𝑝, 𝑞 and 𝑟 (≠ 0) are real numbers, express the following in terms of 𝑝, 𝑞 and 𝑟:
\n" ); document.write( "1/𝛼^3 + 1/𝛽^3 + 1/𝛾^3
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For simplicity of writing,  I will replace  \"alpha\",  \"beta\"  and  \"gamma\" by  \"a\",  \"b\"  and  \"c\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So, we are given an equation  \"x%5E3+%2B+px%5E2+%2B+qx+%2B+r\" = 0,  where p,  q  and  r (=/=0)  are real numbers,
\n" ); document.write( "with the roots  a,  b  and  c.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "They want we find   \"1%2Fa%5E3\" + \"1%2Fb%5E3\" + \"1%2Fc%5E3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "                  Step by step solution\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(a)  First, notice that if \"a\" is the solution to polynomial equation \"x%5E3+%2B+px%5E2+%2B+qx+%2B+r\" = 0, then\r\n" );
document.write( "\r\n" );
document.write( "           \"a%5E3+%2B+pa%5E2+%2B+qa+%2B+r\" = 0.   (1)\r\n" );
document.write( "\r\n" );
document.write( "     Since r =/= 0, the root \"a\" is also not zero, a =/= 0.  In equation (1), divide both sides by \"a%5E3\".\r\n" );
document.write( "     You will get then\r\n" );
document.write( "\r\n" );
document.write( "           \"1+%2B+p%2A%281%2Fa%29+%2B+q%2A%281%2Fa%29%5E2+%2B+r%2A%281%2Fa%29%5E3\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     It means that \"1%2Fa\"  is the root of the cubic polynomial equation\r\n" );
document.write( "\r\n" );
document.write( "           \"rx%5E3+%2B+qx%5E2+%2B+px+%2B+1\" = 0.    (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Similarly,  if \"a\", \"b\" and \"c\" are the roots to equation (1), then  \"1%2Fa\", \"1%2Fb\"  and  \"1%2Fc\"  are the roots\r\n" );
document.write( "     of equation (2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(b)  OK.  It means that if \"a\", \"b\" and \"c\"  are the roots of equation  (1),  \"x%5E3+%2B+px%5E2+%2B+qx+%2B+r\" = 0,\r\n" );
document.write( "\r\n" );
document.write( "          they want we calculate  \"d%5E3+%2B+e%5E3+%2B+f%5E3\", where d, e, and f are the roots of equation (2),  \"rx%5E3+%2B+qx%5E2+%2B+px+%2B+1\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(c)  Due to Vieta's theorem, if d, e and f are the roots of equation (2), then\r\n" );
document.write( "\r\n" );
document.write( "         d + e + f = \"-q%2Fr\",  d*e + d*f + e*f = \"p%2Fr\",  d*e*f = \"-1%2Fr\".    (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(d)  For any real numbers d, e, f, the following identity is valid\r\n" );
document.write( "\r\n" );
document.write( "        \"%28d%2Be%2Bf%29%5E3\" = \"d%5E3+%2B+e%5E3+%2B+f%5E3\" + 3*(d+e+f)*(de + df + ef) - 3def.    (4)\r\n" );
document.write( "\r\n" );
document.write( "     It can be checked / proved by direct calculation.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(e)  Now, substitute expressions (3) into (4).  You will get then\r\n" );
document.write( "\r\n" );
document.write( "        \"-%28q%2Fr%29%5E3\" = \"d%5E3+%2B+e%5E3+%2B+f%5E3\" + \"3%2A%28-q%2Fr%29%2A%28p%2Fr%29\" - \"3%2A%28-1%2Fr%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     It implies   \"d%5E3+%2B+e%5E3+%2B+f%5E3\" = \"-%28q%2Fr%29%5E3\" + \"3%2A%28q%2Fr%29%2A%28p%2Fr%29\" - \"3%2A%281%2Fr%29\",  or\r\n" );
document.write( "                  \r\n" );
document.write( "                  \"d%5E3+%2B+e%5E3+%2B+f%5E3\" = \"-q%5E3%2Fr%5E3%29\" + \"%283qp%29%2Fr%5E2\" - \"3%2Fr\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(f)  Thus the problem is just solved, and the  ANSWER  is:\r\n" );
document.write( "\r\n" );
document.write( "     if a, b and c are the roots of equation (1),  then  \"1%2Fa%5E3\" + \"1%2Fb%5E3\" + \"1%2Fc%5E3\" = \"-q%5E3%2Fr%5E3\" + \"%283qp%29%2Fr%5E2\" - \"3%2Fr\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  If a, b and c are the roots of equation \"x%5E3+%2B+px%5E2+%2B+qx+%2B+r\" = 0,  \r\n" );
document.write( "\r\n" );
document.write( "         then  \"1%2Fa%5E3\" + \"1%2Fb%5E3\" + \"1%2Fc%5E3\" = \"-q%5E3%2Fr%5E3\" + \"%283qp%29%2Fr%5E2\" - \"3%2Fr\".\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );