document.write( "Question 1205103: The revenue function for a particular product is R(x)= x(4-0.0001x).How to Find the largest possible revenue.\r
\n" ); document.write( "\n" ); document.write( "to solve this do I just have to find the critical point and check if its the maximum point using the derivative?
\n" ); document.write( "

Algebra.Com's Answer #841741 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=+x%284-0.0001x%29\"\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=+4x-0.0001x%5E2\"\r
\n" ); document.write( "\n" ); document.write( "using calculus:
\n" ); document.write( "first derivate\r
\n" ); document.write( "\n" ); document.write( "\"%28d%2Fdx%29%284x-0.0001x%5E2%29=4-2%2A0.0001x=4+-+0.0002x\"\r
\n" ); document.write( "\n" ); document.write( "equal it to zero\r
\n" ); document.write( "\n" ); document.write( "\"4+-+0.0002x=0\"\r
\n" ); document.write( "\n" ); document.write( "\"4+=0.0002x\"\r
\n" ); document.write( "\n" ); document.write( "\"x=4%2F0.0002\"\r
\n" ); document.write( "\n" ); document.write( "\"x=20000\"\r
\n" ); document.write( "\n" ); document.write( "plug it in given equation \r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=+4%2A%2820000%29-0.0001%2A%2820000%29%5E2=40000\"\r
\n" ); document.write( "\n" ); document.write( "max revenue is \"40000\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "or, solve it using algebra:\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=+4x-0.0001x%5E2\"\r
\n" ); document.write( "\n" ); document.write( "The revenue equation is a quadratic, so its graph is a parabola. Since the coefficient of the \"x%5E2\" term is negative (\"-0.0001\"), it's an inverted parabola with the vertex at the top.
\n" ); document.write( "The vertex will thus be the \"maximum\" revenue.
\n" ); document.write( "To find the vertex, convert \"R\" to the vertex form. \r
\n" ); document.write( "\n" ); document.write( "\"R+=+a%28x-h%29%5E2%2Bk\" where (\"h\",\"k\") is the location of the vertex. \r
\n" ); document.write( "\n" ); document.write( "Convert to the vertex form by completing the square:\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=+4x-0.0001x%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=-0.0001%28+4x%2F-0.0001%2Bx%5E2%29\"\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=-0.0001%28+-40000x%2Bx%5E2%29\"\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=-0.0001%28+b%5E2-40000x%2Bx%5E2%29-%28-0.0001b%5E2%29\"...\"b=40000%2F2=20000\"\r
\n" ); document.write( "\n" ); document.write( " rearrange the terms in parenthesis\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=-0.0001%28+x%5E2-40000x%2B20000%5E2%29-%28-0.0001%2A20000%5E2%29\"\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=-0.0001%28+x-20000%29%5E2-%28-40000%29\"\r
\n" ); document.write( "\n" ); document.write( "\"R%28x%29=-0.0001%28+x-20000%29%5E2%2B40000\"\r
\n" ); document.write( "\n" ); document.write( "\"h=20000\"
\n" ); document.write( "\"k=40000\"\r
\n" ); document.write( "\n" ); document.write( "vertex is at (\"20000\",\"40000\")=>the maximum revenue is \"40000\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );