document.write( "Question 1205092: #1.
\n" );
document.write( "Prove for all integers n, k, and r with n ≥ k ≥ r that nCk×kCr = nCr×(n-r)C(k-r)\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "#2.
\n" );
document.write( "The binomial theorem states that for any real numbers a and b,
\n" );
document.write( "(a + b)n =∑_(k=0)^n▒〖(n¦k) a^(n-k) b^k 〗 for any integer n ≥ 0.
\n" );
document.write( "Use this theorem to show that for any integer n ≥ 0, ∑_(k=0)^n▒〖〖(-1)〗^k (n¦k) 3^(n-k) 2^k 〗 = 1.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #841735 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Tutor mccravyedwin has covered problem 1. \n" ); document.write( "I'll take a look at problem 2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The nCk refers to the combination formula \n" ); document.write( " \n" ); document.write( "The nCk values are found in Pascal's Triangle. \n" ); document.write( "The nCk replaces the notation (n¦k) which is often written as \n" ); document.write( " \n" ); document.write( " |