document.write( "Question 1205074: A spherical piece of steel is 1/8\" in diameter.\r
\n" );
document.write( "\n" );
document.write( "1). Determine volume.\r
\n" );
document.write( "\n" );
document.write( "2). Determine how many could be produced from 1 cu. in. of the material.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Check my calculations, please.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Sphere volume: 4/3 * pi * r^3\r
\n" );
document.write( "\n" );
document.write( "1.333 * 3.1416 * .0625^3\r
\n" );
document.write( "\n" );
document.write( "= .01021 cu. in. 1).\r
\n" );
document.write( "\n" );
document.write( "1 / .01021 = 97.84 = 98 2).\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #841701 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Part 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Diameter = 1/8 \n" ); document.write( "Radius = 1/16 which is half the diameter\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Volume = (4/3)*pi*(radius)^3 \n" ); document.write( "Volume = (4/3)*pi*(1/16)^3 \n" ); document.write( "Volume = 0.0010226538586 \n" ); document.write( "I kept the fraction 4/3 and I let the calculator handle the decimal digits of pi, so I could get the most accuracy possible. \n" ); document.write( "Round that decimal value however needed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It appears you forgot a zero in your result of .01021\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "n = number of spheres \n" ); document.write( "0.0010226538586 = volume of 1 sphere \n" ); document.write( "0.0010226538586n = volume of n spheres = amount of material \n" ); document.write( "0.0010226538586n = 1 \n" ); document.write( "n = 1/0.0010226538586 \n" ); document.write( "n = 977.847970347451 \n" ); document.write( "n = 977\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We can make about 977 spheres.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Your answer is off by a factor of 10 because you forgot a zero in your previous result. \n" ); document.write( "Your previous result should be smaller by a factor of 10, making the second result larger by a factor of 10 (to counter-balance).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In cases like this, always round down to the nearest whole number. It doesn't matter that n = 977.84797 is closer to 978 compared to 977. \n" ); document.write( "We do not have enough material to make the 978th sphere.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If you made 977 spheres, then you use up \n" ); document.write( "0.0010226538586*977 = 0.9991328198522 cubic inches of material\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "But if you made 978 spheres, then you use up \n" ); document.write( "0.0010226538586*978 = 1.0001554737108 cubic inches \n" ); document.write( "Which is over the target of \"1 cubic inch\". \n" ); document.write( " \n" ); document.write( " |