document.write( "Question 1205058: The angles of elevation of the top Hof a vertical pole HO are observed to be e and a from points P and Q due east and due south of the post. If the distance PQ = d, show that the height of the post is:\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #841681 by mananth(16946)![]() ![]() You can put this solution on YOUR website! In right triangle POH , cot a = OP/OH\r \n" ); document.write( "\n" ); document.write( "OH * cot a = OP\r \n" ); document.write( "\n" ); document.write( "In right triangle QOH , cot b = OQ/OH\r \n" ); document.write( "\n" ); document.write( "OQ= OH cot b\r \n" ); document.write( "\n" ); document.write( "In right triangle POQ\r \n" ); document.write( "\n" ); document.write( "OP^2+OQ^2= PQ^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "OH^2 * cot^2 a +OH^2cot^2b= PQ^2\r \n" ); document.write( "\n" ); document.write( "OH^2 ( cot^2 a +cot^2b)= d^2 (given PQ=d) \n" ); document.write( "OH^2= d^2/ ( cot^2 a +cot^2b)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |