document.write( "Question 1205024: In a right angle triangle ABC side AC is 4cm shorter than the hypotenuse and side BC is also 4cm shorter than the hypotenuse. Find the dimensions of the triangle \n" ); document.write( "
Algebra.Com's Answer #841609 by mananth(16946)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "In a right angle triangle ABC side AC is 4cm shorter than the hypotenuse and side BC is also 4cm shorter than the hypotenuse. Find the dimensions of the triangle\r \n" ); document.write( "\n" ); document.write( "Since it is a right angled triangle we apply pythagoras theorem\r \n" ); document.write( "\n" ); document.write( "let hypotenuse be x\r \n" ); document.write( "\n" ); document.write( "AC= x-4 \n" ); document.write( "BC = x-4\r \n" ); document.write( "\n" ); document.write( "(x-4)^2+(x-4)^2= x^2\r \n" ); document.write( "\n" ); document.write( "2(x-4)^2=x^2\r \n" ); document.write( "\n" ); document.write( "2(x^2-8x+16)=x^2\r \n" ); document.write( "\n" ); document.write( "2x^2-16x+32=x^2 \n" ); document.write( "subtract x^2 from both sides\r \n" ); document.write( "\n" ); document.write( "x^2-16x+32=0 \n" ); document.write( "add 64 to both sides to solve by comp;eting the square metod\r \n" ); document.write( "\n" ); document.write( "(x^2-16x+64)+32=64\r \n" ); document.write( "\n" ); document.write( "(x-8)^2= 64-32\r \n" ); document.write( "\n" ); document.write( "(x-8)^2= 32\r \n" ); document.write( "\n" ); document.write( "take square root\r \n" ); document.write( "\n" ); document.write( "x-8= +/- sqrt(32)\r \n" ); document.write( "\n" ); document.write( "x= 8+/-sqrt(32) The hypotenuse\r \n" ); document.write( "\n" ); document.write( "sides are 4 less than the hypotenuse\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |