document.write( "Question 1204943: How is (-3/4(-8a)+(-3/4)(-12) equivalent to both -3/4(-8a-12) and 6a+9?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #841500 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "You should be careful about the parenthesis placement. \n" ); document.write( "If in doubt, use a calculator or CAS (computer algebra system) to validate the input. \n" ); document.write( "A rule of thumb: There should be the same number of opening parenthesis \"(\" compared to the number of closing parenthesis \")\". Otherwise things are unbalanced.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It appears you're asking how is (-3/4)(-8a)+(-3/4)(-12) equivalent to both (-3/4)(-8a-12) and 6a+9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The simple answer is distributive property \n" ); document.write( "p(q+r) = p*q + p*r \n" ); document.write( "Multiply the outer 'p' with each term inside.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For example, \n" ); document.write( "2(3+4) = 2*3+2*4 = 6+8 = 14 \n" ); document.write( "and using PEMDAS we find that \n" ); document.write( "2(3+4) = 2*(7) = 14 \n" ); document.write( "This is one example using numbers to verify the distributive property works. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another example \n" ); document.write( "3*(103) \n" ); document.write( "= 3*(100+3) \n" ); document.write( "= 3*100 + 3*3 \n" ); document.write( "= 300 + 9 \n" ); document.write( "= 309 \n" ); document.write( "In short, 3*103 = 309\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "One more example with numbers only \n" ); document.write( "7*(215) \n" ); document.write( "= 7*(200+10+5) \n" ); document.write( "= 7*200 + 7*10 + 7*5 \n" ); document.write( "= 1400 + 70 + 35 \n" ); document.write( "= 1400 + 105 \n" ); document.write( "= 1505 \n" ); document.write( "In short, 7*215 = 1505\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's look at a few examples involving variables \n" ); document.write( "4*(3x+5) = 4*3x + 4*5 = 12x + 20 \n" ); document.write( "and \n" ); document.write( "7w*(9w+2) = 7w*9w + 7w*2 = 63w^2 + 14w \n" ); document.write( "and \n" ); document.write( "11(3+6p) = 11*3+11*6p = 33+66p = 66p+33 \n" ); document.write( "I encourage you to try other examples on your own.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Why can we extend the distributive property from numbers only to variables? Because variables are placeholders for numbers. It's a more abstract version. \n" ); document.write( " \n" ); document.write( " |