document.write( "Question 1204917: A sign is erected over top a street by attaching a wire to two lamp posts on either side of the street. If the wire hangs down 3.5 m from the point of attachment on the lamp posts and the sign hangs 1.7 m closer to the lamp on the right. Find the angles of depression of the wire.\r
\n" );
document.write( "\n" );
document.write( "https://ibb.co/D1Jbk4P \n" );
document.write( "
Algebra.Com's Answer #841459 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "Diagram \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The horizontal segments DF and FC add to 32.0 meters since AB = 32.0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "DF + FC = 32.0 \n" ); document.write( "x + x - 1.7 = 32.0 \n" ); document.write( "2x - 1.7 = 32.0 \n" ); document.write( "2x = 32.0 + 1.7 \n" ); document.write( "2x = 33.7 \n" ); document.write( "x = 33.7/2 \n" ); document.write( "x = 16.85\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For right triangle DEF we have legs DF = x = 16.85 and EF = 3.5 \n" ); document.write( "tan(angle) = opposite/adajcent \n" ); document.write( "tan(D) = EF/DF \n" ); document.write( "tan(D) = 16.85/3.5 \n" ); document.write( "tan(D) = 4.814286 \n" ); document.write( "D = arctan(4.814286) \n" ); document.write( "D = 78.265663 \n" ); document.write( "Angle FDE = 78.265663 is one approximate angle of depression on the left side.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now focus on right triangle CEF. \n" ); document.write( "FC = x - 1.7 = 16.85 - 1.7 = 15.15 \n" ); document.write( "then, \n" ); document.write( "tan(angle) = opposite/adajcent \n" ); document.write( "tan(C) = EF/FC \n" ); document.write( "tan(C) = 3.5/15.15 \n" ); document.write( "tan(C) = 0.231023 \n" ); document.write( "C = arctan(0.231023) \n" ); document.write( "C = 13.008421 \n" ); document.write( "Angle FCE = 13.008421 is another approximate angle of depression on the right side. \n" ); document.write( " \n" ); document.write( " |