document.write( "Question 1204814: Let $\mathcal{R}$ be the circle centered at $(0,0)$ with radius $15.$ The lines $x = 8$ and $y = 1$ divide $\mathcal{R}$ into four regions $\mathcal{R}_1$, $\mathcal{R}_2$, $\mathcal{R}_3$, and $\mathcal{R}_4$. Let $[\mathcal{R}_i]$ denote the area of region $\mathcal{R}_i$. If\r
\n" ); document.write( "\n" ); document.write( "[R1] > [R2] > [R3] > [R4],\r
\n" ); document.write( "\n" ); document.write( "then find $[\mathcal{R}_1] + [\mathcal{R}_2] + [\mathcal{R}_3] + [\mathcal{R}_4]$.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #841316 by ikleyn(52792)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The sum of areas of 4 regions is the area of the entire circle, which is \"pi%2A15%5E2\" = 3.14159265*225 = use your calculator,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "otherwise you will learn nothing from my post.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );