document.write( "Question 1204698:  Determine the equation of the hyperbola in standard form and general form.
\n" );
document.write( "https://i.ibb.co/4jjgzVK/1.jpg\r
\n" );
document.write( "\n" );
document.write( "Answer for the standard equation was ((y + 1)^2)/4  -  ((x + 2)^2)/(1/4) = 1\r
\n" );
document.write( "\n" );
document.write( "My answer was of course wrong: ((y + 1)^2)/16  -  ((x + 2)^2)/1 = 1
\n" );
document.write( "There was no point in rewriting into general form when my standard form was already incorrect\r
\n" );
document.write( "\n" );
document.write( "What I did:
\n" );
document.write( "Center (-2, -1)
\n" );
document.write( "I picked points (-1, 3) and (-3, 3) on the two asymptotes to find slope +/- 4
\n" );
document.write( "Does that mean a = 4 and b = 1?
\n" );
document.write( "Because that’s what I used to plug into the equation ((y - k)^2)/a^2  -  ((x - h)^2)/b^2 = 1 \n" );
document.write( "
| Algebra.Com's Answer #841133 by greenestamps(13209)     You can put this solution on YOUR website! \n" ); document.write( "The slopes of the asymptotes being 4 and -4 does not mean a=4 and b=1. It only means a/b=4. \n" ); document.write( "The given graph shows the larger y value when x=-2 has to be 1. Use that to find a and then b: \n" ); document.write( "---------------------------------------------- \n" ); document.write( "(revised presentation, after question from student....) \n" ); document.write( " \n" ); document.write( "When x = -2, the y value is 1: \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Then a/b=4 leads to b=1/2. \n" ); document.write( "That gives you the correct equation. \n" ); document.write( " \n" ); document.write( " |