document.write( "Question 1204569: Explain why, for any values of a, b, and c, the equations
\n" ); document.write( "2x + 2y + 5z = a
\n" ); document.write( "−3x + y − 2z = b
\n" ); document.write( "x + z = c
\n" ); document.write( "always have a unique solution.\r
\n" ); document.write( "\n" ); document.write( "Find this unique solution (in terms of a, b, and c)
\n" ); document.write( "

Algebra.Com's Answer #840898 by math_tutor2020(3821)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The given system
\n" ); document.write( "\"system%282x%2B2y%2B5z=a%2C-3x%2By-2z=b%2Cx%2Bz+=+c%29\"
\n" ); document.write( "converts to this matrix
\n" ); document.write( "\"%28matrix%283%2C4%2C2%2C+2%2C+5%2C+a%2C+-3%2C+1%2C+-2%2C+b%2C+1%2C+0%2C+1%2C+c%29%29\"
\n" ); document.write( "Normally matrices do not have separating lines, but I think it's beneficial to have them.
\n" ); document.write( "I'll place the items in a table like this
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
225a
-31-2b
101c
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's apply row operations to zero out the entries below each pivot.\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
115/2a/2(1/2)*R1 --> R1
-31-2b
101c

\n" ); document.write( "Notation like (1/2)*R1 --> R1 means we take half of each element in row 1 (aka R1). Then store the results in R1.
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
115/2a/2
0411/23a/2+bR2 + 3*R1 --> R2
101c

\n" ); document.write( "Something like R2 + 3*R1 --> R2 will mean that we triple everything in R1, then add those results to R2. Store the results in R2.
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
115/2a/2
0411/23a/2+b
0-1-3/2c - a/2R3 - R1 --> R3
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
115/2a/2
0111/83a/8+b/4(1/4)*R2 --> R2
0-1-3/2c - a/2
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
115/2a/2
0111/83a/8+b/4
00-1/8-a/8 + b/4 + cR3 + R2 --> R3
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
115/2a/2
0111/83a/8+b/4
001a-2b-8c-8*R3 --> R3
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At this point the matrix is in row echelon form (REF), but we haven't reached RREF just yet.
\n" ); document.write( "Let's keep row reducing until all of the non-pivot entries are turned to 0.
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
115/2a/2
010-a+3b+11cR2 - (11/8)*R3 --> R2
001a-2b-8c
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
110-2a+5b+20cR1 - (5/2)*R3 --> R3
010-a+3b+11c
001a-2b-8c
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
100-a+2b+9cR1 - R2 --> R1
010-a+3b+11c
001a-2b-8c
\r
\n" ); document.write( "\n" ); document.write( "The matrix is now in Reduced Row Echelon Form (RREF).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The system has exactly one solution, and it is when:
\n" ); document.write( "x = -a+2b+9c
\n" ); document.write( "y = -a+3b+11c
\n" ); document.write( "z = a-2b-8c
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Confirmation using WolframAlpha
\n" ); document.write( "https://www.wolframalpha.com/input/?i=2x%2B2y%2B5z%3Da%2C-3x%2By-2z%3Db%2Cx%2Bz%3Dc
\n" ); document.write( "The search input to type in is \"2x+2y+5z=a,-3x+y-2z=b,x+z=c\" without quotes.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The CAS feature in GeoGebra can also be used.
\n" ); document.write( "There are two options to input
\n" ); document.write( "Either
\n" ); document.write( "Solve[{2x+2y+5z=a,-3x+y-2z=b,x+z=c}]
\n" ); document.write( "or
\n" ); document.write( "ReducedRowEchelonForm[{{2, 2, 5, a}, {-3, 1, -2, b}, {1, 0, 1, c}}]
\n" ); document.write( "The way GeoGebra handles matrices is that they are a collection of lists.
\n" ); document.write( "Each list is enclosed in curly braces, which represents a particular row.
\n" ); document.write( "There are likely other CAS based matrix calculators out there that can offer similar features.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Some more practice with matrix row reduction
\n" ); document.write( "https://www.algebra.com/algebra/college/linear/Linear_Algebra.faq.question.1204100.html
\n" ); document.write( "and
\n" ); document.write( "https://www.algebra.com/algebra/homework/Matrices-and-determiminant/Matrices-and-determiminant.faq.question.1203997.html
\n" ); document.write( "
\n" ); document.write( "
\n" );