document.write( "Question 1204344: When is divided by x - 2, the remainder is 59. When it is divided by x + 1, the remainder is - 1. Find the values of a and b. \n" );
document.write( "
Algebra.Com's Answer #840524 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! Remainder Theorem: \n" ); document.write( "If P(x) is divided over (x-k), then P(k) is the remainder.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = ax^3 - x^2 + 3x + b \n" ); document.write( "f(2) = a(2)^3 - (2)^2 + 3(2) + b \n" ); document.write( "f(2) = 8a + b + 2 \n" ); document.write( "f(2) = 59 because of the remainder theorem \n" ); document.write( "8a + b + 2 = 59 \n" ); document.write( "b = 59-2-8a \n" ); document.write( "b = 57-8a\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = ax^3 - x^2 + 3x + b \n" ); document.write( "f(-1) = a(-1)^3 - (-1)^2 + 3(-1) + b \n" ); document.write( "f(-1) = -a + b - 4 \n" ); document.write( "f(-1) = -1 because of the remainder theorem \n" ); document.write( "-a + b - 4 = -1 \n" ); document.write( "-a + (57-8a) - 4 = -1 \n" ); document.write( "-9a + 53 = -1 \n" ); document.write( "-9a = -1-53 \n" ); document.write( "-9a = -54 \n" ); document.write( "a = -54/(-9) \n" ); document.write( "a = 6\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( "b = 57-8a \n" ); document.write( "b = 57 - 8*6 \n" ); document.write( "b = 57 - 48 \n" ); document.write( "b = 9 \n" ); document.write( " \n" ); document.write( " |