document.write( "Question 1204214: ~p ^ r
\n" );
document.write( "p v q
\n" );
document.write( "--------
\n" );
document.write( "∴ q v r \n" );
document.write( "
Algebra.Com's Answer #840344 by math_tutor2020(3817) ![]() You can put this solution on YOUR website! \n" ); document.write( "Method 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Informal approach:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If ~p ^ r is the case then ~p is the case and r is also the case.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Using ~p and p v q, we find that q comes out of that. \n" ); document.write( "p v q means \"p or q\". We then know that p isn't the case since ~p is, so q must be the case.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If q is true then so is q v r. \n" ); document.write( "In fact, we can replace r with any other logical statement. There's nothing really special about the r.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Method 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Truth Table \n" ); document.write( "
\n" ); document.write( "Notice that we do not have a situation where all premises are true but the conclusion is false. \n" ); document.write( "Therefore, this is a valid argument.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Here is a review of various truth table rules \n" ); document.write( "https://www.algebra.com/algebra/homework/Conjunction/truth-table1.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Method 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Logic Derivation \n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Refer to these rules of inference and replacement \n" ); document.write( "https://logiccurriculum.com/2019/02/09/rules-for-proofs/\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |