document.write( "Question 1204214: ~p ^ r
\n" ); document.write( "p v q
\n" ); document.write( "--------
\n" ); document.write( "∴ q v r
\n" ); document.write( "

Algebra.Com's Answer #840344 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Method 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Informal approach:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If ~p ^ r is the case then ~p is the case and r is also the case.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Using ~p and p v q, we find that q comes out of that.
\n" ); document.write( "p v q means \"p or q\". We then know that p isn't the case since ~p is, so q must be the case.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If q is true then so is q v r.
\n" ); document.write( "In fact, we can replace r with any other logical statement. There's nothing really special about the r.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Truth Table
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
pqr~p~p ^ rp v qq v r
TTTFFTT
TTFFFTT
TFTFFTT
TFFFFTF
FTTTTTT
FTFTFTT
FFTTTFT
FFFTFFF

\n" ); document.write( "Notice that we do not have a situation where all premises are true but the conclusion is false.
\n" ); document.write( "Therefore, this is a valid argument.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here is a review of various truth table rules
\n" ); document.write( "https://www.algebra.com/algebra/homework/Conjunction/truth-table1.lesson\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Logic Derivation
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
NumberStatementLine(s) UsedReason
1~p ^ r
2p v q
:.q v r
3~p1Simplification
4q2,3Disjunctive Syllogism
5q v r4Addition
\r
\n" ); document.write( "\n" ); document.write( "Refer to these rules of inference and replacement
\n" ); document.write( "https://logiccurriculum.com/2019/02/09/rules-for-proofs/\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );