document.write( "Question 1204189: The product of the first and third of three negative consecutive integers is 59 more than 4 times the second integer. Find the integers.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #840274 by ikleyn(52776)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "The integers are (n-1), n, (n+1), and\r\n" ); document.write( "\r\n" ); document.write( " (n-1)*(n+1) = 4n + 59,\r\n" ); document.write( "\r\n" ); document.write( "or\r\n" ); document.write( "\r\n" ); document.write( " n^2 - 1 = 4n + 59,\r\n" ); document.write( "\r\n" ); document.write( "which implies\r\n" ); document.write( "\r\n" ); document.write( " n^2 - 4n - 60 = 0,\r\n" ); document.write( "\r\n" ); document.write( " (n-10)*(n+6) = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, the middle integer can be either 10 or -6.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "And since the integers are negative, the only possibility is that the three numbers are -7, -6, -5.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "This and only this triple satisfies the problem's condition.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |