document.write( "Question 1204140: Assume that a sample is used to estimate a population proportion p. Find the 90% confidence interval for a sample of size 95 with 31.6% successes. Enter your answer as a tri-linear inequality using decimals (not percents) accurate to three decimal places.\r
\n" ); document.write( "\n" ); document.write( " < p < \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer should be obtained without any preliminary rounding. However, the critical value may be rounded to 3 decimal places.
\n" ); document.write( "

Algebra.Com's Answer #840202 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "phat = sample proportion = 0.316
\n" ); document.write( "phat's job is to estimate the population proportion p\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = sample size = 95\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At 90% confidence, the z critical value is approximately z = 1.645
\n" ); document.write( "This is something to memorize.
\n" ); document.write( "Alternatively you can use a Z table or stats calculator (such as a TI83).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then,
\n" ); document.write( "E = margin of error for a proportion
\n" ); document.write( "E = z*sqrt(phat*(1-phat)/n)
\n" ); document.write( "E = 1.645*sqrt(0.316*(1-0.316)/95)
\n" ); document.write( "E = 0.07846494809787
\n" ); document.write( "E = 0.078465 approximately\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Afterward we compute the lower and upper bounds (L and U)
\n" ); document.write( "L = lower boundary
\n" ); document.write( "L = phat - E
\n" ); document.write( "L = 0.316 - 0.078465
\n" ); document.write( "L = 0.237535
\n" ); document.write( "L = 0.238\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "U = upper boundary
\n" ); document.write( "U = phat + E
\n" ); document.write( "U = 0.316 + 0.078465
\n" ); document.write( "U = 0.394465
\n" ); document.write( "U = 0.394\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The 90% confidence interval in the format L < p < U would be approximately 0.238 < p < 0.394
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );