document.write( "Question 1204031: Suppose a parabola opens upward, has focus at (1,-1), has a horizontal directrix, and passes through the point (-31,59).\r
\n" );
document.write( "\n" );
document.write( "a. The directrix will have an equation of?\r
\n" );
document.write( "\n" );
document.write( "b. The equation of the parabola will be?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #840034 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Part (a)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "F = focus = (1,-1) \n" ); document.write( "P = point on parabola = (-31,59) \n" ); document.write( "D = point on directrix that is directly above or below P (this is for a horizontal directrix only)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For a parabola to be possible, we must have this condition hold: \n" ); document.write( "FP = PD\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Check out the diagram shown here \n" ); document.write( " ![]() \n" ); document.write( "Image Source: \n" ); document.write( "https://en.wikipedia.org/wiki/Parabola \n" ); document.write( "The pink congruent segments are what you should focus on.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use the distance formula to see how far it is from the focus F(1,-1) to the point on the parabola P(-31,59) \n" ); document.write( "(x1,y1) = (1,-1) and (x2,y2) = (-31,59) \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "The distance from the focus F(1,-1) to a point on the parabola P(-31,59) is exactly 68 units. \n" ); document.write( "This is the length of segment FP. \n" ); document.write( "It's also the length of segment PD.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Due to the horizontal directrix, from point P(-31,59), we will either move up 68 units or move down 68 units to arrive at point D. \n" ); document.write( "Because P has a y coordinate larger than the y coordinate of F, it must mean the parabola opens upward. Consequently it means the directrix is below point P. \n" ); document.write( "So we'll move down 68 units from P(-31,59) to D(-31,-9) \n" ); document.write( "The equation of the directrix is then the y coordinate of point D.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: The equation of the directrix is y = -9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "========================================================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part (b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Start at the focus F(1,-1) and move straight down to arrive at the directrix y = -9 \n" ); document.write( "This will move you 8 units down. \n" ); document.write( "Half of which is 4. \n" ); document.write( "This is the focal length. It's the distance between vertex and focus. It's also the distance from vertex to directrix.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Start at F(1,-1) to move 4 units down to arrive at the vertex V(1,-5)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Recall the vertex form template is \n" ); document.write( "y = a(x-h)^2+k \n" ); document.write( "where \n" ); document.write( "a = determines whether the parabola opens up or down \n" ); document.write( "(h,k) = vertex\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug in the coordinates of the vertex to get \n" ); document.write( "y = a(x-h)^2+k \n" ); document.write( "y = a(x-1)^2+(-5) \n" ); document.write( "y = a(x-1)^2-5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then plug in the coordinates of the other point on the parabola (-31,59). This will allow us to solve for 'a' \n" ); document.write( "y = a(x-1)^2-5 \n" ); document.write( "59 = a(-31-1)^2-5 \n" ); document.write( "59 = a(-32)^2-5 \n" ); document.write( "59 = 1024a-5 \n" ); document.write( "1024a-5 = 59 \n" ); document.write( "1024a = 59+5 \n" ); document.write( "1024a = 64 \n" ); document.write( "a = 64/1024 \n" ); document.write( "a = (1*64)/(16*64) \n" ); document.write( "a = 1/16 \n" ); document.write( "a = 0.0625 exactly\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore the vertex form equation would be \n" ); document.write( "y = (1/16)(x-1)^2-5 \n" ); document.write( "or \n" ); document.write( "y = 0.0625(x-1)^2-5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I'll expand out the decimal form \n" ); document.write( "y = 0.0625(x-1)^2-5 \n" ); document.write( "y = 0.0625(x^2-2x+1)-5 \n" ); document.write( "y = 0.0625x^2-0.125x+0.0625-5 \n" ); document.write( "y = 0.0625x^2-0.125x-4.9375 \n" ); document.write( "This is in standard form y = ax^2+bx+c \n" ); document.write( "a = 0.0625 = 1/16 \n" ); document.write( "b = -0.125 = -1/8 \n" ); document.write( "c = -4.9375 = -79/16 \n" ); document.write( "Each decimal is exact and hasn't been rounded.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer \n" ); document.write( "The equation of the parabola in standard form, using fractions, is y = (1/16)x^2 - (1/8)x - 79/16 \n" ); document.write( "That converts to the exact decimal form y = 0.0625x^2-0.125x-4.9375\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Or to save time, you can stick to the vertex form y = (1/16)(x-1)^2-5 aka y = 0.0625(x-1)^2-5 \n" ); document.write( "It will depend on which form your teacher will want. \n" ); document.write( " \n" ); document.write( " |