document.write( "Question 1204031: Suppose a parabola opens upward, has focus at (1,-1), has a horizontal directrix, and passes through the point (-31,59).\r
\n" ); document.write( "\n" ); document.write( "a. The directrix will have an equation of?\r
\n" ); document.write( "\n" ); document.write( "b. The equation of the parabola will be?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #840034 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Part (a)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "F = focus = (1,-1)
\n" ); document.write( "P = point on parabola = (-31,59)
\n" ); document.write( "D = point on directrix that is directly above or below P (this is for a horizontal directrix only)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For a parabola to be possible, we must have this condition hold:
\n" ); document.write( "FP = PD\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Check out the diagram shown here
\n" ); document.write( "
\n" ); document.write( "Image Source:
\n" ); document.write( "https://en.wikipedia.org/wiki/Parabola
\n" ); document.write( "The pink congruent segments are what you should focus on.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the distance formula to see how far it is from the focus F(1,-1) to the point on the parabola P(-31,59)
\n" ); document.write( "(x1,y1) = (1,-1) and (x2,y2) = (-31,59)
\n" ); document.write( "\"d+=+sqrt%28+%28x1-x2%29%5E2+%2B+%28y1-y2%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%281-%28-31%29%29%5E2+%2B+%28-1-59%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%281%2B31%29%5E2+%2B+%28-1-59%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%2832%29%5E2+%2B+%28-60%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+1024+%2B+3600+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+4624+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+68\"
\n" ); document.write( "The distance from the focus F(1,-1) to a point on the parabola P(-31,59) is exactly 68 units.
\n" ); document.write( "This is the length of segment FP.
\n" ); document.write( "It's also the length of segment PD.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Due to the horizontal directrix, from point P(-31,59), we will either move up 68 units or move down 68 units to arrive at point D.
\n" ); document.write( "Because P has a y coordinate larger than the y coordinate of F, it must mean the parabola opens upward. Consequently it means the directrix is below point P.
\n" ); document.write( "So we'll move down 68 units from P(-31,59) to D(-31,-9)
\n" ); document.write( "The equation of the directrix is then the y coordinate of point D.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: The equation of the directrix is y = -9\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "========================================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Start at the focus F(1,-1) and move straight down to arrive at the directrix y = -9
\n" ); document.write( "This will move you 8 units down.
\n" ); document.write( "Half of which is 4.
\n" ); document.write( "This is the focal length. It's the distance between vertex and focus. It's also the distance from vertex to directrix.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Start at F(1,-1) to move 4 units down to arrive at the vertex V(1,-5)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Recall the vertex form template is
\n" ); document.write( "y = a(x-h)^2+k
\n" ); document.write( "where
\n" ); document.write( "a = determines whether the parabola opens up or down
\n" ); document.write( "(h,k) = vertex\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in the coordinates of the vertex to get
\n" ); document.write( "y = a(x-h)^2+k
\n" ); document.write( "y = a(x-1)^2+(-5)
\n" ); document.write( "y = a(x-1)^2-5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then plug in the coordinates of the other point on the parabola (-31,59). This will allow us to solve for 'a'
\n" ); document.write( "y = a(x-1)^2-5
\n" ); document.write( "59 = a(-31-1)^2-5
\n" ); document.write( "59 = a(-32)^2-5
\n" ); document.write( "59 = 1024a-5
\n" ); document.write( "1024a-5 = 59
\n" ); document.write( "1024a = 59+5
\n" ); document.write( "1024a = 64
\n" ); document.write( "a = 64/1024
\n" ); document.write( "a = (1*64)/(16*64)
\n" ); document.write( "a = 1/16
\n" ); document.write( "a = 0.0625 exactly\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore the vertex form equation would be
\n" ); document.write( "y = (1/16)(x-1)^2-5
\n" ); document.write( "or
\n" ); document.write( "y = 0.0625(x-1)^2-5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'll expand out the decimal form
\n" ); document.write( "y = 0.0625(x-1)^2-5
\n" ); document.write( "y = 0.0625(x^2-2x+1)-5
\n" ); document.write( "y = 0.0625x^2-0.125x+0.0625-5
\n" ); document.write( "y = 0.0625x^2-0.125x-4.9375
\n" ); document.write( "This is in standard form y = ax^2+bx+c
\n" ); document.write( "a = 0.0625 = 1/16
\n" ); document.write( "b = -0.125 = -1/8
\n" ); document.write( "c = -4.9375 = -79/16
\n" ); document.write( "Each decimal is exact and hasn't been rounded.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer
\n" ); document.write( "The equation of the parabola in standard form, using fractions, is y = (1/16)x^2 - (1/8)x - 79/16
\n" ); document.write( "That converts to the exact decimal form y = 0.0625x^2-0.125x-4.9375\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Or to save time, you can stick to the vertex form y = (1/16)(x-1)^2-5 aka y = 0.0625(x-1)^2-5
\n" ); document.write( "It will depend on which form your teacher will want.
\n" ); document.write( "
\n" ); document.write( "
\n" );