document.write( "Question 1204030: Find the focal diameter for the parabola 34.8y = x^2
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #840029 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"34.8y+=+x%5E2\"\r
\n" ); document.write( "\n" ); document.write( "comparing to \"4py=x%5E2\", we have\r
\n" ); document.write( "\n" ); document.write( "(\"h\",\"k\")=(\"0\",\"0\")\r
\n" ); document.write( "\n" ); document.write( "\"4p=34.8\" => \"p=34.8%2F4\"=> \"p=8.7\"\r
\n" ); document.write( "\n" ); document.write( "then\r
\n" ); document.write( "\n" ); document.write( "focus: (\"0\",\"8.7\")
\n" ); document.write( "vertex: (\"0\",\"0\")
\n" ); document.write( "semi-axis length: \"8.7\"
\n" ); document.write( "focal parameter: \"2%2A8.7=17.4\"
\n" ); document.write( "eccentricity: \"1\"
\n" ); document.write( "directrix:\"+y+=+-8.7\"\r
\n" ); document.write( "\n" ); document.write( "Focal parameter (the distance between the focus to the directrix) is \"17.4\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );