document.write( "Question 1203803: A discrete random variable has pdf f(x).
\n" );
document.write( "(a) If f(x) = k(1/2)^x for x= 1, 2, 3, and zero otherwise, find k.
\n" );
document.write( "(b) Is a function of the form f(x) = k[(1/2)^x - 1/2] for x = 0, 1, 2 a pdf for any k? \n" );
document.write( "
Algebra.Com's Answer #839764 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Part (a)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = k(1/2)^x \n" ); document.write( "f(1) = k(1/2)^1 \n" ); document.write( "f(1) = k/2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = k(1/2)^x \n" ); document.write( "f(2) = k(1/2)^2 \n" ); document.write( "f(2) = k/4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = k(1/2)^x \n" ); document.write( "f(3) = k(1/2)^3 \n" ); document.write( "f(3) = k/8\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For any PDF, the f(x) probability values add to 1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(1) + f(2) + f(3) = 1 \n" ); document.write( "k/2 + k/4 + k/8 = 1 \n" ); document.write( "4k/8 + 2k/8 + k/8 = 1 \n" ); document.write( "(4k+2k+k)/8 = 1 \n" ); document.write( "7k/8 = 1 \n" ); document.write( "7k = 1*8 \n" ); document.write( "7k = 8 \n" ); document.write( "k = 8/7\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "=========================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part (b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = k[(1/2)^x - 1/2] \n" ); document.write( "f(0) = k[(1/2)^0 - 1/2] \n" ); document.write( "f(0) = k/2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = k[(1/2)^x - 1/2] \n" ); document.write( "f(1) = k[(1/2)^1 - 1/2] \n" ); document.write( "f(1) = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) = k[(1/2)^x - 1/2] \n" ); document.write( "f(2) = k[(1/2)^2 - 1/2] \n" ); document.write( "f(2) = -k/4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(0)+f(1)+f(2) = 1 \n" ); document.write( "k/2 + 0 + (-k/4) = 1 \n" ); document.write( "2k/4 - k/4 = 1 \n" ); document.write( "(2k-k)/4 = 1 \n" ); document.write( "k/4 = 1 \n" ); document.write( "k = 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "f(x) is a PDF if and only if k = 4 \n" ); document.write( " \n" ); document.write( " |