document.write( "Question 1203668: Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) ∈ R 3. Find all real numbers c ∈ R such that the angle between the vectors −e1 + 2e2 + ke3 and −e1 + ke2 + 2e3 is π/2 (they are orthogonal).
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #839410 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) ∈ \n" ); document.write( "the vectors −e1 + 2e2 + ke3 and −e1 + ke2 + 2e3 is π/2 (they are orthogonal). \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "The given vectors are (-1,2,k) and (-1,k,2), in coordinate form.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "They are orthogonal (perpendicular) if and only if their scalar product is zero.\r\n" ); document.write( "\r\n" ); document.write( "Find the scalar product of these vectors, using their coordinate forms.\r\n" ); document.write( "\r\n" ); document.write( "The scalsr product is (-1)*(-1) + 2k + 2k = 1 + 4k.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The vectors are orthogonal in\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |