document.write( "Question 1203611: x+4y-6z=-1
\n" ); document.write( "2x-y+2z=-7
\n" ); document.write( "-x+2y-4z=5
\n" ); document.write( "

Algebra.Com's Answer #839301 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "I'll show how to solve this system using matrix row reduction.
\n" ); document.write( "The goal is to get the matrix into reduced row echelon form (RREF).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We have this given system
\n" ); document.write( "x+4y-6z=-1
\n" ); document.write( "2x-y+2z=-7
\n" ); document.write( "-x+2y-4z=5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "which is the same as
\n" ); document.write( "1x+4y-6z=-1
\n" ); document.write( "2x-1y+2z=-7
\n" ); document.write( "-1x+2y-4z=5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It forms this matrix
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
2-12-7
-12-45

\n" ); document.write( "The last column represents the right hand values -1, -7 and 5.
\n" ); document.write( "The rest of the matrix represents the coefficients.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Normally a matrix does not have separating grid lines, which is unfortunate. But I'll use grid lines to help separate the values. It should hopefully make things look a bit cleaner.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here are the steps for RREF.\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
2-12-7
-12-45
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
0-914-5R2 - 2*R1 --> R2
-12-45

\n" ); document.write( "Notation like R2 - 2*R1 --> R2 means \"subtract off twice of row 1 from row 2. Then store the results in row 2 (we overwrite row 2)\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
0-914-5
06-104R3+R1 --> R3
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
01-14/95/9(-1/9)*R2 -> R2
06-104
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
01-14/95/9
00-2/32/3R3 - 6*R2 -> R3
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
01-14/95/9
001-1(-3/2)*R3 -> R3

\n" ); document.write( "The matrix is in row echelon form (REF) but not RREF. This is because we have a lower triangular region of zeros below the main diagonal pivot entries. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
010-1R2 + (14/9)*R3 -> R2
001-1
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
10-63R1 - 4*R2 -> R1
010-1
001-1
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
100-3R1 + 6*R3 -> R1
010-1
001-1
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For more practice with RREF, here is a very useful tool
\n" ); document.write( "http://www.math.odu.edu/~bogacki/lat/
\n" ); document.write( "It is called \"linear algebra toolkit\". It is a collection of matrix solvers that show step by step solutions. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To summarize:
\n" ); document.write( "We started with this 3x4 matrix
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
14-6-1
2-12-7
-12-45

\n" ); document.write( "and ended up with this reduced row echelon form (RREF)
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
100-3
010-1
001-1
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The original 3x3 sub-block has morphed into the 3x3 identity matrix which has the main diagonal of all \"1\"s, and the rest are \"0\"s.
\n" ); document.write( "The right hand side of this RREF matrix are the solution values.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:
\n" ); document.write( "x = -3
\n" ); document.write( "y = -1
\n" ); document.write( "z = -1

\n" ); document.write( "I'll let the student check each equation.
\n" ); document.write( "
\n" ); document.write( "
\n" );