document.write( "Question 1203441: Which of the ff are associative binary operations? Show your solutions?
\n" );
document.write( "i. (ℤ,*), where x*y=(x+y)-(x·y) for all x,y,∈ℤ.
\n" );
document.write( "ii. (ℝ,*), where x*y=max (x,y) for all x,y,∈ℝ.
\n" );
document.write( "iii. (ℝ,*), where x*y= |x+y| for all x,y,∈ℝ. \n" );
document.write( "
Algebra.Com's Answer #839007 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "I'll work on part (i) only, and leave parts (ii) and (iii) for the student to do.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If the operator star was associative, then a*(b*c) = (a*b)*c must be true. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's do a bit of scratch work \n" ); document.write( "x*y=(x+y)-(x·y) \n" ); document.write( "a*b=(a+b)-(a·b) \n" ); document.write( "b*c=(b+c)-(b·c)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then we can say: \n" ); document.write( "a*(b*c)=a*((b+c)-(b·c)) \n" ); document.write( "a*(b*c)=(a+(b+c)-bc)-a((b+c)-(b·c)) \n" ); document.write( "a*(b*c)=(a+(b+c)-bc)+(-a(b+c)+abc) \n" ); document.write( "a*(b*c)=(a+b+c-bc)+(-ab-ac+abc) \n" ); document.write( "a*(b*c)=(a+b+c)+(-bc-ab-ac+abc) \n" ); document.write( "Be careful not to mix up the star operator with the multiplication symbol.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "And furthermore, \n" ); document.write( "(a*b)*c = ((a+b)-(a·b))*c \n" ); document.write( "(a*b)*c = ((a+b)-(a·b)+c) - ((a+b)-(a·b))*c \n" ); document.write( "(a*b)*c = ((a+b)-(a·b)+c) - (ac+bc)+(abc) \n" ); document.write( "(a*b)*c = ((a+b)-(a·b)+c) + (-ac-bc)+(abc) \n" ); document.write( "(a*b)*c = (a+b+c-ab) + (-ac-bc+abc) \n" ); document.write( "(a*b)*c = (a+b+c) + (-ab-ac-bc+abc)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In summary we found these equations \n" ); document.write( "a*(b*c)=(a+b+c)+(-bc-ab-ac+abc) \n" ); document.write( "(a*b)*c = (a+b+c) + (-ab-ac-bc+abc)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Compare the right hand sides of a*(b*c) and (a*b)*c \n" ); document.write( "Both have the same exact terms. Compare the terms carefully.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, we have proven that a*(b*c) = (a*b)*c \n" ); document.write( "This shows the operator star is associative when we have defined the operator star to be x*y = (x+y) - xy \n" ); document.write( " \n" ); document.write( " |