document.write( "Question 1203326: Find the point y-axis that is equidistant from (5,1) and (-3, -1) \n" ); document.write( "
Algebra.Com's Answer #838790 by math_tutor2020(3816)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answer: (0,4)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===================================================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'll go over two methods.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The given points are (5,1) and (-3,-1) which I'll label A and B respectively.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The mystery point is of the form (0,y) residing on the y axis.
\n" ); document.write( "Let's call this point C.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A = (5,1)
\n" ); document.write( "B = (-3,-1)
\n" ); document.write( "C = (0,y)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The goal is to determine the value of y such that segment AC and segment BC have the same length.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compute the distance from A to C
\n" ); document.write( "\"d+=+sqrt%28+%28x2-x1%29%5E2%2B%28y2-y1%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%280-5%29%5E2%2B%28y-1%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%28-5%29%5E2%2B%28y-1%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+25%2B%28y-1%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+25%2B%28y%5E2-2y%2B1%29+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+y%5E2-2y%2B26+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then do the same for the distance from B to C
\n" ); document.write( "\"d+=+sqrt%28+%28x2-x1%29%5E2%2B%28y2-y1%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%280-%28-3%29%29%5E2%2B%28y-%28-1%29%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%280%2B3%29%5E2%2B%28y%2B1%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+%283%29%5E2%2B%28y%2B1%29%5E2+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+9%2B%28y%5E2%2B2y%2B1%29+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d+=+sqrt%28+y%5E2%2B2y%2B10+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Equate those expressions to allow us to solve for y.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "distance A to C = distance B to C\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"sqrt%28+y%5E2-2y%2B26+%29+=+sqrt%28+y%5E2%2B2y%2B10+%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2-2y%2B26+=+y%5E2%2B2y%2B10\" Square both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-2y%2B26+=+2y%2B10\" The y^2 terms cancel\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-2y-2y+=+10-26\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-4y+=+-16\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y+=+-16%2F%28-4%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y+=+4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We go from the template (0,y) to (0,4)
\n" ); document.write( "The point (0,4) is equidistant from A(5,1) and B(-3,-1) such that it is on the y axis.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Method 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The given points are
\n" ); document.write( "A = (5,1)
\n" ); document.write( "B = (-3,-1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compute the midpoint of segment AB.
\n" ); document.write( "We add up the coordinates and divide in half
\n" ); document.write( "x: (5+(-3))/2 = 1
\n" ); document.write( "y: (1+(-1))/2 = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The midpoint of segment AB is located at (1,0) which I'll call point D.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now compute the slope of line AB
\n" ); document.write( "m = (y2-y1)/(x2-x1)
\n" ); document.write( "m = (-1-1)/(-3-5)
\n" ); document.write( "m = (-2)/(-8)
\n" ); document.write( "m = 1/4
\n" ); document.write( "Line AB has a slope of 1/4.
\n" ); document.write( "The perpendicular line has a slope of -4/1 = -4. Apply the negative reciprocal. We flip the fraction and flip the sign.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The goal now is to find the equation of the perpendicular line through the midpoint D(1,0)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words: we want the equation of the perpendicular bisector of segment AB.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Apply point-slope form
\n" ); document.write( "y - y1 = m(x - x1)
\n" ); document.write( "y - 0 = -4(x - 1)
\n" ); document.write( "y = -4x + 4
\n" ); document.write( "This equation has slope -4 and y-intercept 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The y intercept of this equation is the exact point equidistant from A and B, and is on the y axis.
\n" ); document.write( "I'll leave the proof to the reader as to why this works. A hint would be to draw segments CA, CB, and CD.
\n" ); document.write( "Then prove triangle ACD is congruent to triangle BCD.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I recommend using graphing tools like GeoGebra or Desmos.
\n" ); document.write( "
\n" ); document.write( "
\n" );