document.write( "Question 1203303: Hi, I was wondering if I could get some help on this problem?
\n" );
document.write( "If f(n) = , find f(1) + f(2) + f(3)+...+ f(2005)
\n" );
document.write( "All I can figure out is the split the logarithm on the bottom into
\n" );
document.write( "Thank you! \n" );
document.write( "
Algebra.Com's Answer #838752 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Claim: \n" ); document.write( "f(n) + f(2006-n) = 1 where n is an integer in the set {1,2,3,...,2005}\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Here's a proof: \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "Both f(n) and f(2006-n) have the same denominator.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It allows us to add the numerators and use the log rule log(A)+log(B) = log(AB) \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then using that formula we can write \n" ); document.write( "f(1) + f(2005) = 1 \n" ); document.write( "f(2) + f(2004) = 1 \n" ); document.write( "f(3) + f(2003) = 1 \n" ); document.write( "f(4) + f(2002) = 1 \n" ); document.write( "... \n" ); document.write( "... \n" ); document.write( "f(2002) + f(4) = 1 \n" ); document.write( "f(2003) + f(3) = 1 \n" ); document.write( "f(2004) + f(2) = 1 \n" ); document.write( "f(2005) + f(1) = 1 \n" ); document.write( "We have 2005 pairs of values. Each pair adds to 1. \n" ); document.write( "We have a sum of 1+1+1+...+1 = 2005*1 = 2005\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This appears it could be the final answer. However, it is not. Pay close attention that double-counting has taken place here. \n" ); document.write( "For instance, f(1)+f(2005) would be treated the same as f(2005)+f(1).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To correct this error, divide by 2. \n" ); document.write( "2005/2 = 1002.5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Put another way, if we add straight down through all 2005 equations and do a bit of algebraic housekeeping, the left hand sides combine to: \n" ); document.write( "2*( f(1)+f(2)+f(3)+...+f(2005) ) \n" ); document.write( "while the right hand sides combine to 1+1+1+..+1, aka 2005 copies of '1' being added. \n" ); document.write( "Therefore, we have the equation \n" ); document.write( "2*( f(1)+f(2)+f(3)+...+f(2005) ) = 2005 \n" ); document.write( "which rearranges to \n" ); document.write( "f(1)+f(2)+f(3)+...+f(2005) = 2005/2 = 1002.5\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: \n" ); document.write( "f(1) + f(2) + f(3)+...+ f(2005) = 1002.5 \n" ); document.write( " \n" ); document.write( " |