Algebra.Com's Answer #838750 by ikleyn(52803)  You can put this solution on YOUR website! . \n" );
document.write( "If f(n) = , find f(1) + f(2) + f(3) + . . . + f(2005). \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Let m = 2006 - n, and consider the sum of two symmetric terms\r\n" );
document.write( "\r\n" );
document.write( " f(n) + f(m) = + .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Notice that 2006m-m^2 = 2006*(2006-n) - (2006-n)^2 = 2006^2 - 2006n - 2006^2 + 2*2006n - n^2 = 2006n-n^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, f(n) and f(m) have THE SAME DENOMINATOR log(2006n-n^2). \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " +---------------------------------------------------------+\r\n" );
document.write( " | This remarkable observation is a KEY to the solution. |\r\n" );
document.write( " +---------------------------------------------------------+\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we can write these two addends and their sum with the common denominator\r\n" );
document.write( "\r\n" );
document.write( " f(n) + f(m) = + = \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which we can continue\r\n" );
document.write( "\r\n" );
document.write( " f(n) + f(m) = (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next, nm = n*(2006-n) = 2006n-n^2,\r\n" );
document.write( "\r\n" );
document.write( "so, in (1) the numerator is the same as the denominator.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It gives us f(n) + f(m) = 1 for each and every pair of positive integers (n,m) such that m = 2006-n.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the symmetric pairs give the sum of 1 taken 1002 times, i.e. the sum of 1002.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The central (unpaired) term at n= 1003 gives f(n) = f(1003) = = = = .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the total sum and the is 1002 = 1002.5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER. The total sum is 1002 = 1002.5.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "-----------------\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "This problem is of a recognized Math Olympiad level.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |