document.write( "Question 1203303: Hi, I was wondering if I could get some help on this problem?
\n" ); document.write( "If f(n) = \"log%28n%29%2Flog%282006n-n%5E2%29\", find f(1) + f(2) + f(3)+...+ f(2005)
\n" ); document.write( "All I can figure out is the split the logarithm on the bottom into \"log%28n%29+%2B+log%282006+-+n%29\"
\n" ); document.write( "Thank you!
\n" ); document.write( "

Algebra.Com's Answer #838750 by ikleyn(52803)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "If   f(n) = \"log%28%28n%29%29%2Flog%28%282006n-n%5E2%29%29\",    find   f(1) + f(2) + f(3) + . . . + f(2005).
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Let m = 2006 - n, and consider the sum of two symmetric terms\r\n" );
document.write( "\r\n" );
document.write( "    f(n) + f(m) = \"log%28%28n%29%29%2Flog%28%282006n-n%5E2%29%29\" + \"log%28%28m%29%29%2Flog%28%282006m-m%5E2%29%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Notice that  2006m-m^2 = 2006*(2006-n) - (2006-n)^2 = 2006^2 - 2006n - 2006^2 + 2*2006n - n^2 = 2006n-n^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, f(n) and f(m) have THE SAME DENOMINATOR log(2006n-n^2).   \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    +---------------------------------------------------------+\r\n" );
document.write( "    |  This remarkable observation is a KEY to the solution.  |\r\n" );
document.write( "    +---------------------------------------------------------+\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we can write these two addends and their sum with the common denominator\r\n" );
document.write( "\r\n" );
document.write( "    f(n) + f(m) = \"log%28%28n%29%29%2Flog%28%282006n-n%5E2%29%29\" + \"log%28%28m%29%29%2Flog%28%282006n-n%5E2%29%29\" = \"%28log%28%28n%29%29+%2B+log%28%28m%29%29%29%2Flog%28%282006n-n%5E2%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which we can continue\r\n" );
document.write( "\r\n" );
document.write( "    f(n) + f(m) = \"log%28%28nm%29%29%2Flog%28%282006n-n%5E2%29%29\"    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next,  nm = n*(2006-n) = 2006n-n^2,\r\n" );
document.write( "\r\n" );
document.write( "so, in (1)  the numerator is the same as the denominator.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It gives us  f(n) + f(m) = 1 for each and every pair of positive integers (n,m) such that  m = 2006-n.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the symmetric pairs give the sum of 1 taken 1002 times, i.e. the sum of 1002.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The central (unpaired) term at n= 1003 gives f(n) = f(1003) = \"log%28%281003%29%29%2Flog%28%282006%2A1003-1003%5E2%29%29\" = \"log%28%281003%29%29%2Flog%28%281003%5E2%29%29\" = \"log%28%281003%29%29%2F%282%2Alog%28%281003%29%29%29\" = \"1%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the total sum and the  \"highlight%28highlight%28ANSWER%29%29\"  is 1002\"1%2F2\" = 1002.5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  The total sum is 1002\"1%2F2\" = 1002.5.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This problem is of a recognized Math Olympiad level.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );