document.write( "Question 1203186: 6x7^n - 2x3^n habis dibagi 4 untuk setiap n bilangan asli. \r
\n" );
document.write( "\n" );
document.write( "keterangan : ^n = pangkat n \n" );
document.write( "
Algebra.Com's Answer #838553 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Translation of what the student wrote \n" ); document.write( "6x7^n — 2x3^n is divisible by 4 for every n natural numbers. \n" ); document.write( "description: ^n = power n\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I'll write the solution in English, and let the student translate back to their original native language.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I'm assuming that you want to prove this claim by induction.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The natural numbers is the set {1,2,3,4,...} \n" ); document.write( "n = 1 is the smallest item \n" ); document.write( "Compute the expression for n = 1 \n" ); document.write( "6*7^n - 2*3^n \n" ); document.write( "6*7^1 - 2*3^1 \n" ); document.write( "6*7 - 2*3 \n" ); document.write( "42 - 6 \n" ); document.write( "36 \n" ); document.write( "4*9 \n" ); document.write( "The last step shows that we get a multiple of 4 \n" ); document.write( "Which in turn proves that 6*7^n - 2*3^n is a multiple of 4 when n = 1 \n" ); document.write( "In other words, 6*7^n - 2*3^n is divisible by 4 when n = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "That covers the base case. \n" ); document.write( "Now onto the inductive step. \n" ); document.write( "Assume that 6*7^k - 2*3^k is a multiple of 4, when k is some natural number and k > 1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This would mean \n" ); document.write( "6*7^k - 2*3^k = 4m \n" ); document.write( "for some integer m\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Based on the assumption above, we want to prove that 6*7^(k+1) - 2*3^(k+1) is also a multiple of 4 \n" ); document.write( "The goal is to show that 6*7^(k+1) - 2*3^(k+1) can be written in the template 4*(some integer).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Through a bit of algebra... \n" ); document.write( "6*7^(k+1) - 2*3^(k+1) \n" ); document.write( "6*7^k*7^1 - 2*3^k*3^1 \n" ); document.write( "42*7^k - 6*3^k \n" ); document.write( "(6*7^k + 36*7^k) - (2*3^k + 4*3^k) \n" ); document.write( "6*7^k + 36*7^k - 2*3^k - 4*3^k \n" ); document.write( "(6*7^k - 2*3^k) + (36*7^k - 4*3^k) \n" ); document.write( "(4m) + 4*(9*7^k - 1*3^k) \n" ); document.write( "4( m + 9*7^k - 1*3^k ) \n" ); document.write( "4*(some integer)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We conclude that 6*7^(k+1) - 2*3^(k+1) is a multiple of 4 when 6*7^k - 2*3^k is a multiple of 4. \n" ); document.write( "This wraps up the inductive step, and it wraps up the induction proof overall.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another approach to the inductive step\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Return back to the assumption of \n" ); document.write( "6*7^k - 2*3^k = 4m\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Isolating the first term gets us \n" ); document.write( "6*7^k = 4m + 2*3^k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then apply a substitution as marked in red \n" ); document.write( "6*7^(k+1) - 2*3^(k+1) \n" ); document.write( "6*7^k*7^1 - 2*3^k*3^1 \n" ); document.write( "7*6*7^k - 6*3^k \n" ); document.write( "7*6*7^k - 6*3^k \n" ); document.write( "7*(4m + 2*3^k) - 6*3^k \n" ); document.write( "28m + 14*3^k - 6*3^k \n" ); document.write( "28m + 8*3^k \n" ); document.write( "4*( 7m + 2*3^k ) \n" ); document.write( "4*(some integer)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have shown that 6*7^(k+1) - 2*3^(k+1) is a multiple of 4 when 6*7^k - 2*3^k is a multiple of 4.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "However you approach the inductive step, both methods show that 6*7^k - 2*3^k being a multiple of 4 leads 6*7^(k+1) - 2*3^(k+1) to be a multiple of 4.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It is then a domino effect to cause 6*7^n - 2*3^n to be a multiple of 4 for any natural number n. \n" ); document.write( " \n" ); document.write( " |