document.write( "Question 1202902: If the letter E can never be first or last, how many distinct arrangements of the letters A, B, C, D, E, and
\n" ); document.write( "F are possible?\r
\n" ); document.write( "\n" ); document.write( "(A) 120
\n" ); document.write( "(B) 240
\n" ); document.write( "(C) 480
\n" ); document.write( "(D) 600
\n" ); document.write( "(E) 720
\n" ); document.write( "

Algebra.Com's Answer #838106 by ikleyn(52847)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "There is another way to solve the problem.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In all, we have  6  letters  A,  B,  C,  D,  E,  and  F,  and \r
\n" ); document.write( "\n" ); document.write( "6! = 6*5*4*3*2*1 = 720   of their possible permutations.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From it,  subtract 5! = 120 permutations,  where letter  C  is first,
\n" ); document.write( "and another  5! = 120 permutations,  where letter  C  is the last.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You get the answer   720 - 120 - 120 =  480 permutations.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ANSWER.     7! - 5! - 5! = 720 - 2*120 = 480  permutations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );