document.write( "Question 1202902: If the letter E can never be first or last, how many distinct arrangements of the letters A, B, C, D, E, and
\n" );
document.write( "F are possible?\r
\n" );
document.write( "\n" );
document.write( "(A) 120
\n" );
document.write( "(B) 240
\n" );
document.write( "(C) 480
\n" );
document.write( "(D) 600
\n" );
document.write( "(E) 720 \n" );
document.write( "
Algebra.Com's Answer #838106 by ikleyn(52847)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "There is another way to solve the problem.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In all, we have 6 letters A, B, C, D, E, and F, and \r \n" ); document.write( "\n" ); document.write( "6! = 6*5*4*3*2*1 = 720 of their possible permutations.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "From it, subtract 5! = 120 permutations, where letter C is first, \n" ); document.write( "and another 5! = 120 permutations, where letter C is the last.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You get the answer 720 - 120 - 120 = 480 permutations.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "ANSWER. 7! - 5! - 5! = 720 - 2*120 = 480 permutations.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |