document.write( "Question 1202735: Consider the following test scores in a class of 34 students:
\n" );
document.write( "56, 60, 60, 61, 62, 63, 65, 66, 70, 70, 72, 73, 74, 74, 75, 75, 78, 78, 79, 80, 81, 85, 86, 87, 88, 88, 89, 89, 90, 94, 99, 99, 100, 100. \r
\n" );
document.write( "\n" );
document.write( "What is the five-number summary? \n" );
document.write( "
Algebra.Com's Answer #837808 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Answer: \n" ); document.write( "min = 56 \n" ); document.write( "Q1 = 70 \n" ); document.write( "median = 78 \n" ); document.write( "Q3 = 88 \n" ); document.write( "max = 100 \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Explanation: \n" ); document.write( "The first step is to sort the data. \n" ); document.write( "Luckily that has been done for us already.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "There are n = 34 values in the set. \n" ); document.write( "n/2 = 34/2 = 17 \n" ); document.write( "The middle most value is a tie between the values in slots 17 and 18. Those values are 78 and 78. \n" ); document.write( "There's no need to use the midpoint formula, but you could if you wanted to. \n" ); document.write( "Median = 78\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll split the data into two subsets \n" ); document.write( "L = lower set = stuff smaller than the median \n" ); document.write( "U = upper set = stuff larger than the median\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "L = {56, 60, 60, 61, 62, 63, 65, 66, 70, 70, 72, 73, 74, 74, 75, 75, 78}\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "U = {78, 79, 80, 81, 85, 86, 87, 88, 88, 89, 89, 90, 94, 99, 99, 100, 100}\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Set L has 17 items \n" ); document.write( "17/2 = 8.5 which rounds to 9 \n" ); document.write( "The value in slot 9 of set L is 70 \n" ); document.write( "Therefore, the median of set L is 70, and it is the first quartile (Q1) \n" ); document.write( "Q1 = 70\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Through similar steps, the value of Q3 = 88 because it is the median of set U.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The min and max are the smallest and largest elements of the original set. \n" ); document.write( "min = 56 \n" ); document.write( "max = 100\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To wrap things up: \n" ); document.write( "min = 56 \n" ); document.write( "Q1 = 70 \n" ); document.write( "median = 78 \n" ); document.write( "Q3 = 88 \n" ); document.write( "max = 100 \n" ); document.write( " \n" ); document.write( " |