document.write( "Question 1202676: A box of Mrs. Donuts contains 8 honey dipped, 6 Bavarians, and 7 chocolate-filled donuts. How many ways can 5 donuts be selected to meet each condition?\r
\n" );
document.write( "\n" );
document.write( "a. 3 Bavarian and 2 chocolate filled?\r
\n" );
document.write( "\n" );
document.write( "b. 2 Bavarian, 2 honey-dipped, and 1 chocolate filled?\r
\n" );
document.write( "\n" );
document.write( "c. exactly 1 honey dipped? \n" );
document.write( "
Algebra.Com's Answer #837676 by mananth(16946)![]() ![]() You can put this solution on YOUR website! a. \n" ); document.write( " 3 Bavarian and 2 chocolate filled \n" ); document.write( "Use combination formula, we get:\r \n" ); document.write( "\n" ); document.write( "C(6,3) * C(7,2) \n" ); document.write( "= (6! / (3! * (6-3)!) ) * (7! / (2! * (7-2)!) ) \n" ); document.write( "= 20 * 21 = 420\r \n" ); document.write( "\n" ); document.write( "420 ways to select 3 Bavarian and 2 chocolate-filled donuts.\r \n" ); document.write( "\n" ); document.write( "b. \n" ); document.write( "2 Bavarian, 2 honey-dipped, and 1 chocolate-filled donut. Use the combination formula\r \n" ); document.write( "\n" ); document.write( "C(6,2) * C(8,2) * C(7,1) \n" ); document.write( "= (6! / (2! * (6-2)!) ) * (8! / (2! * (8-2)!) ) * (7! / (1! * (7-1)!) ) \n" ); document.write( " = 15 * 28 * 7 = 2940\r \n" ); document.write( "\n" ); document.write( "2940 ways to select 2 Bavarian, 2 honey-dipped, and 1 chocolate-filled donut.\r \n" ); document.write( "\n" ); document.write( "c. \n" ); document.write( " 1 honey-dipped donut, we choose 1 honey-dipped donut from 8 \n" ); document.write( " and 4 donuts from the remaining 13. we get\r \n" ); document.write( "\n" ); document.write( "C(8,1) * C(13,4) = (8! / (1! * (8-1)!) ) * (13! / (4! * (13-4)!) ) = 8 * 715 = 5720\r \n" ); document.write( "\n" ); document.write( " 5720 ways to select 1 honey-dipped donut. \n" ); document.write( " |