document.write( "Question 1202278: Dances at the community centre produce revenue R=-60t^2 +600t, where R is the revenue and t the ticket price in dollars. Francine, the manager, found that the expenses, C, for the dances is modelled by C=162 - 120t. Note: Profit P = R- C.\r
\n" );
document.write( "\n" );
document.write( "a) Determine the equation to represent the profit.
\n" );
document.write( "b) Determine the break-even point (zero profit).
\n" );
document.write( "c) Find the maximum profit and the ticket price that yields this profit. \n" );
document.write( "
Algebra.Com's Answer #836989 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Part (a)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Revenue = money coming in \n" ); document.write( "Cost = money going out\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Profit = Revenue - Cost \n" ); document.write( "P = R - C \n" ); document.write( "P = ( R ) - ( C ) \n" ); document.write( "P = ( -60t^2 +600t ) - ( 162 - 120t ) \n" ); document.write( "P = -60t^2 +600t - 162 + 120t \n" ); document.write( "P = -60t^2 + 720t - 162 is the final answer.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "===================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part (b)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The break-even point is when the company neither gains money nor loses money. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Set profit equal to zero to determine t.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "P = 0 \n" ); document.write( "-60t^2 + 720t - 162 = 0 \n" ); document.write( "-6(10t^2 - 120t + 27) = 0 \n" ); document.write( "10t^2 - 120t + 27 = 0/(-6) \n" ); document.write( "10t^2 - 120t + 27 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's use the quadratic formula. \n" ); document.write( "Plugging in a = 10, b = -120, c = 27 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "Each decimal value is approximate.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: \n" ); document.write( "Break-even point happens when t = 0.23 and when t = 11.77\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "===================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part (c)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The vertex in this case is the highest point. It corresponds to the max profit.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The x coordinate of the vertex is the midpoint of the roots. \n" ); document.write( "Each root is a break-even point.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Average the two break-even points \n" ); document.write( "(0.23+11.77)/2 = 6 \n" ); document.write( "The max profit happens when t = 6 is the ticket price.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug this into the profit function. \n" ); document.write( "P = -60t^2 + 720t - 162 \n" ); document.write( "P = -60*6^2 + 720*6 - 162 \n" ); document.write( "P = 1998\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Answer: \n" ); document.write( "The max profit is $1,998. It occurs when the ticket price is $6. \n" ); document.write( " \n" ); document.write( " |