document.write( "Question 1201936: If p + 1/p = 5 and p does not equal 0, which of the following is a possible value of p - 1/p ?\r
\n" ); document.write( "\n" ); document.write( "(A) sqrt(25)
\n" ); document.write( "(B) sqrt(24)
\n" ); document.write( "(C) sqrt(23)
\n" ); document.write( "(D) sqrt(22)
\n" ); document.write( "(E) sqrt(21)
\n" ); document.write( "

Algebra.Com's Answer #836517 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answer: Choice (E) sqrt(21)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanation:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Square both sides of the given equation
\n" ); document.write( "p+ (1/p) = 5
\n" ); document.write( "[ p+ (1/p) ]^2 = 5^2
\n" ); document.write( "[ p+ (1/p) ][ p+ (1/p) ] = 25
\n" ); document.write( "p*p + p*(1/p) + (1/p)*p + (1/p)(1/p) = 25 .... FOIL rule
\n" ); document.write( "p^2 + 1 + 1 + (1/p)^2 = 25
\n" ); document.write( "p^2 + 2 + (1/p)^2 = 25
\n" ); document.write( "p^2 + (1/p)^2 = 23
\n" ); document.write( "I'll refer to this equation as eq2 for a substitution step later on.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let q = p - (1/p)
\n" ); document.write( "Square both sides to see what happens\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p - (1/p) = q
\n" ); document.write( "[ p - (1/p) ]^2 = q^2
\n" ); document.write( "p*p + p*(-1/p) + (-1/p)*p + (-1/p)(-1/p) = q^2
\n" ); document.write( "p^2 - 1 - 1 + (1/p)^2 = q^2
\n" ); document.write( "p^2 - 2 + (1/p)^2 = q^2
\n" ); document.write( "p^2 + (1/p)^2 - 2 = q^2
\n" ); document.write( "[ p^2 + (1/p)^2 ] - 2 = q^2
\n" ); document.write( "[ p^2 + (1/p)^2 ] - 2 = q^2
\n" ); document.write( "[ 23 ] - 2 = q^2 ......... substitution; use eq2
\n" ); document.write( "21 = q^2
\n" ); document.write( "q^2 = 21
\n" ); document.write( "q = sqrt(21)
\n" ); document.write( "p - (1/p) = sqrt(21)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another approach would be to solve the equation p + (1/p) = 5 for p\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p + (1/p) = 5
\n" ); document.write( "p * [ p + (1/p) ] = p*5
\n" ); document.write( "p^2 + 1 = 5p
\n" ); document.write( "p^2 - 5p + 1 = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the quadratic formula to find these two roots
\n" ); document.write( "p = (5 + sqrt(21))/2
\n" ); document.write( "p = (5 - sqrt(21))/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then use either root to compute p - (1/p)
\n" ); document.write( "I'll let you do these steps.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hint:
\n" ); document.write( "If p = (5+sqrt(21))/2, then 1/p = (5 - sqrt(21))/2 after rationalizing the denominator.
\n" ); document.write( "A similar situation happens when p = (5 - sqrt(21))/2
\n" ); document.write( "
\n" ); document.write( "
\n" );