document.write( "Question 1201857: from my 'Vector Equation of a Line' lesson\r
\n" ); document.write( "\n" ); document.write( "A line has the equation y = (-5/6)x + 9\r
\n" ); document.write( "\n" ); document.write( "a. Give a direction vector for a line that is parallel to this line. \r
\n" ); document.write( "\n" ); document.write( "b. Give a direction vector for a line that is perpendicular to this line. \r
\n" ); document.write( "\n" ); document.write( "c. Give the coordinates of a point on the given line. \r
\n" ); document.write( "\n" ); document.write( "d. In both vector and parametric form, give the equations of the line parallel to the given line and passing through A (7,9)\r
\n" ); document.write( "\n" ); document.write( "e. In both vector and parametric form, give the equations of the line perpendicular to the given line and passing through B (-2,1)
\n" ); document.write( "

Algebra.Com's Answer #836450 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Part (a)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The line is of the form y = mx+b
\n" ); document.write( "m = slope = -5/6
\n" ); document.write( "b = y intercept = 9\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The slope tells us how to go from one point to another on the line.
\n" ); document.write( "It is the direction vector.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "slope = rise/run
\n" ); document.write( "rise/run = -5/6
\n" ); document.write( "rise = -5
\n" ); document.write( "run = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The rise tells us how much to move up or down.
\n" ); document.write( "In this case we go down 5. This is the change in y.
\n" ); document.write( "The run is the change in x. We go 6 units to the right.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: < 6,-5 > \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=========================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Swap the coordinate positions of the direction vector.
\n" ); document.write( "Then flip the sign of exactly one coordinate. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "original = < 6,-5 >
\n" ); document.write( "swapped = < -5,6 >
\n" ); document.write( "change sign of x coord = < 5,6 >
\n" ); document.write( "OR
\n" ); document.write( "change sign of y coord = < -5,-6 >\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You can use the dot product to confirm vectors < 6,-5 > and < 5,6 > are perpendicular (same goes for < 6,-5 > and < -5,-6 > being perpendicular).
\n" ); document.write( "If u dot v = 0, then u is perpendicular to v. \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: < 5,6 > or < -5,-6 > \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=========================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (c)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in x = 0 and find y
\n" ); document.write( "y = (-5/6)*x + 9
\n" ); document.write( "y = (-5/6)*0 + 9
\n" ); document.write( "y = 0 + 9
\n" ); document.write( "y = 9
\n" ); document.write( "The point (0,9) is on this line\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Repeat for x = 6
\n" ); document.write( "y = (-5/6)*x + 9
\n" ); document.write( "y = (-5/6)*6 + 9
\n" ); document.write( "y = -5 + 9
\n" ); document.write( "y = 4
\n" ); document.write( "The point (6,4) is also on the line\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The movement from (0,9) to (6,4) is \"down 5, right 6\"
\n" ); document.write( "Or along the direction vector < 6,-5 > which means \"go right 6, then down 5\".
\n" ); document.write( "There are infinitely many points on this line.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: (0,9) \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=========================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (d)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Vector form of the line:
\n" ); document.write( "< x,y > = startVector + t*DirectionVector
\n" ); document.write( "< x,y > = < 0,9 > + t*< 6,-5 >
\n" ); document.write( "The start vector could be any other vector you want, as long as it's on the line.
\n" ); document.write( "So you could pick < 6,4 > for instance.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now we need to find the vector equation of a line parallel to what was mentioned, but goes through (7,9)
\n" ); document.write( "The start vector will be < 7,9 >
\n" ); document.write( "The direction vector is the same.
\n" ); document.write( "Parallel vectors are equal or scalar multiples of one another. They point in the same direction (eg: northeast).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Vector form of the parallel line:
\n" ); document.write( "< x,y > = startVector + t*DirectionVector
\n" ); document.write( "< x,y > = < 7,9 > + t*< 6,-5 >\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now rewrite things a bit like so
\n" ); document.write( "< x,y > = < 7,9 > + t*< 6,-5 >
\n" ); document.write( "< x,y > = < 7,9 > + < 6t,-5t >
\n" ); document.write( "< x,y > = < 7+6t,9-5t >
\n" ); document.write( "That breaks down into
\n" ); document.write( "x = 7+6t
\n" ); document.write( "y = 9-5t
\n" ); document.write( "Both of which form a system of equations to define the parametric form of the parallel line.
\n" ); document.write( "The t is any real number. It can be thought of as the time value.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "What happens at t = 0?
\n" ); document.write( "(x,y) = (7+6t,9-5t)
\n" ); document.write( "(x,y) = (7+6*0,9-5*0)
\n" ); document.write( "(x,y) = (7,9)
\n" ); document.write( "Which confirms (7,9) is on the parallel line\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answers:
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
Vector form:< x,y > = < 7,9 > + t*< 6,-5 >
Parametric form:x = 7+6t
y = 9-5t
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=========================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part (e)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Original direction vector = < 6,-5 >
\n" ); document.write( "Perpendicular direction vector = < 5,6 >
\n" ); document.write( "Refer to part (b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Vector form of the perpendicular line:
\n" ); document.write( "< x,y > = startVector + t*DirectionVector
\n" ); document.write( "< x,y > = < -2,1 > + t*< 5,6 >
\n" ); document.write( "< x,y > = < -2,1 > + < 5t,6t >
\n" ); document.write( "< x,y > = < -2+5t,1+6t >\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Any point on this perpendicular line through (-2,1) is of the general form (x,y) = (-2+5t, 1+6t) where t is any real number.
\n" ); document.write( "Plug t = 0 to find (x,y) = (-2,1)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answers:
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
Vector form:< x,y > = < -2,1 > + t*< 5,6 >
Parametric form:x = -2+5t
y = 1+6t

\n" ); document.write( "
\n" ); document.write( "
\n" );