document.write( "Question 1201653: The life expectancy of light bulbs whose lifetimes are normally distributed with a mean life of 750 hours and with a standard deviation of 80 hours. Show or explain how you determine the appropriate z-score and related percentage. \r
\n" ); document.write( "\n" ); document.write( "What percent of light bulbs will last longer than 870 hours? \r
\n" ); document.write( "\n" ); document.write( "What percent of light bulbs will last between 730 hours and 850 hours? \r
\n" ); document.write( "\n" ); document.write( "What percent of light bulbs will last less than 770 hours? \r
\n" ); document.write( "\n" ); document.write( "Inverse Normal Distribution: If the quality control program of the company can consistently eliminate the worst 10% of the bulbs manufactured, the manufacturer can safely offer customers a money-back guarantee on all lights that fail before [_____] hours of burning time.\r
\n" ); document.write( "\n" ); document.write( "-----
\n" ); document.write( "Thank you!
\n" ); document.write( "

Algebra.Com's Answer #836122 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answers:
  1. percentage = 6.681%
  2. percentage = 49.306%
  3. percentage = 59.871%
  4. lifespan = 647 hours
Each value is approximate.
\n" ); document.write( "Round each value according to the instructions your teacher provides.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=====================================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanations:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Problem 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = life span measured in hours
\n" ); document.write( "This is some positive real number.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The goal is to find P(x > 870) which computes the probability of getting a random light bulb that has a life span longer than 870 hours.
\n" ); document.write( "This is equivalent to finding the percentage of light bulbs that last longer than 870 hours. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "mu = 750 = population mean lifetime
\n" ); document.write( "sigma = 80 = population standard deviation of the lifetimes\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find the z score when x = 870
\n" ); document.write( "z = (x-mu)/sigma
\n" ); document.write( "z = (870-750)/80
\n" ); document.write( "z = 120/80
\n" ); document.write( "z = 1.50\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The task of finding P(x > 870) is equivalent to P(z > 1.50) for the mu and sigma values mentioned.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'll be using this Z table
\n" ); document.write( "https://www.ztable.net/
\n" ); document.write( "A similar table can be found in the back of your stats textbook.
\n" ); document.write( "On that link, scroll down the page to see a few examples how to read that table.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use such a table to find that
\n" ); document.write( "P(z < 1.50) = 0.93319
\n" ); document.write( "which means
\n" ); document.write( "P(z > 1.50) = 1-P(z < 1.50)
\n" ); document.write( "P(z > 1.50) = 1-0.93319
\n" ); document.write( "P(z > 1.50) = 0.06681
\n" ); document.write( "That leads back to
\n" ); document.write( "P(x > 870) = 0.06681
\n" ); document.write( "This value is approximate.
\n" ); document.write( "The same will apply to nearly every other decimal value I mention, with the exception of something like a z score of z = 1.50 (that decimal value is exact).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Roughly 6.681% of the light bulbs will last longer than 870 hours.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You could use a specialized stats calculator such as this one
\n" ); document.write( "https://davidmlane.com/normal.html
\n" ); document.write( "as an alternative to using a Z table.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This article goes over a few examples of how to calculate normal distribution probabilities on a TI84 calculator.
\n" ); document.write( "https://www.statology.org/normal-probabilities-ti-84-calculator/\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------
\n" ); document.write( "Problem 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "mu = 750
\n" ); document.write( "sigma = 80\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compute the z score for x = 730
\n" ); document.write( "z = (x-mu)/sigma
\n" ); document.write( "z = (730-750)/80
\n" ); document.write( "z = -20/80
\n" ); document.write( "z = -0.25\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Repeat for x = 850
\n" ); document.write( "z = (x-mu)/sigma
\n" ); document.write( "z = (850-750)/80
\n" ); document.write( "z = 100/80
\n" ); document.write( "z = 1.25\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The task of finding P(730 < x < 850) is equivalent to P(-0.25 < z < 1.25)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the Z table to find
\n" ); document.write( "P(Z < -0.25) = 0.40129
\n" ); document.write( "and
\n" ); document.write( "P(Z < 1.25) = 0.89435\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,
\n" ); document.write( "P(a < Z < b) = P(Z < b) - P(Z < a)
\n" ); document.write( "P(-0.25 < Z < 1.25) = P(Z < 1.25) - P(Z < -0.25)
\n" ); document.write( "P(-0.25 < Z < 1.25) = 0.89435 - 0.40129
\n" ); document.write( "P(-0.25 < Z < 1.25) = 0.49306\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This leads back to
\n" ); document.write( "P(730 < x < 850) = 0.49306\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Roughly 49.306% of the light bulbs will last between 730 hours and 850 hours.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------
\n" ); document.write( "Problem 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "mu = 750
\n" ); document.write( "sigma = 80\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compute the z score for x = 770
\n" ); document.write( "z = (x-mu)/sigma
\n" ); document.write( "z = (770-750)/80
\n" ); document.write( "z = 20/80
\n" ); document.write( "z = 0.25\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The task of finding P(x < 770) is equivalent to P(z < 0.25)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The Z table says that
\n" ); document.write( "P(Z < 0.25) = 0.59871
\n" ); document.write( "so,
\n" ); document.write( "P(x < 770) = 0.59871\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore, roughly 59.871% of the light bulbs will last less than 770 hours.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------
\n" ); document.write( "Problem 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The worst 10% is the lowest 10% of life spans.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We need to find a value of k such that
\n" ); document.write( "P(Z < k) = 0.10
\n" ); document.write( "This value of k is the marker that separates the bottom 10% from the top 90%.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use a calculator such as this one
\n" ); document.write( "https://davidmlane.com/normal.html
\n" ); document.write( "or a TI84
\n" ); document.write( "https://www.statology.org/inverse-normal-distribution/\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you use the first link, then click on the \"value from an area\" option.
\n" ); document.write( "From there the instructions should be pretty straight forward. Let me know if you have questions.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You should find that P(Z < -1.282) = 0.10 approximately.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Convert the z score z = -1.282 into its equivalent raw x score.
\n" ); document.write( "mu = 750
\n" ); document.write( "sigma = 80
\n" ); document.write( "z = (x-mu)/sigma
\n" ); document.write( "-1.282 = (x-750)/80
\n" ); document.write( "-1.282*80 = x-750
\n" ); document.write( "-102.56 = x-750
\n" ); document.write( "x = -102.56+750
\n" ); document.write( "x = 647.44\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's say we round that to the nearest whole number to get 647
\n" ); document.write( "We found that P(x < 647) = 0.10 approximately.
\n" ); document.write( "About 10% of the light bulbs last less than 647 hours.
\n" ); document.write( "
\n" ); document.write( "
\n" );