document.write( "Question 1201612: You are given the sample mean and the population standard deviation. Use this information to construct the 90% and 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. If convenient, use technology to construct the confidence intervals.\r
\n" );
document.write( "\n" );
document.write( "A random sample of 55 home theater systems has a mean price of $117.00. Assume the population standard deviation is $18.30. \n" );
document.write( "
Algebra.Com's Answer #836075 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Answers: \n" ); document.write( "90% confidence interval is (112.94, 121.06) \n" ); document.write( "95% confidence interval is (112.16, 121.84) \n" ); document.write( "The 95% confidence interval is wider.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Further explanation is down below.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "====================================================================================\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "At 90% confidence, the z critical value is roughly z = 1.645 \n" ); document.write( "Use a table like this \n" ); document.write( "https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf \n" ); document.write( "to get that value. Look at the bottom row labeled \"Z\" and above the 90% confidence level. \n" ); document.write( "A stats calculator can also compute this value.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "xbar = 117.00 = sample mean \n" ); document.write( "sigma = 18.30 = population standard deviation \n" ); document.write( "n = 55 = sample size\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's compute the margin of error \n" ); document.write( "E = margin of error \n" ); document.write( "E = z*sigma/sqrt(n) \n" ); document.write( "E = 1.645*18.30/sqrt(55) \n" ); document.write( "E = 4.05915511193244 \n" ); document.write( "E = 4.059155\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( "L = lower boundary \n" ); document.write( "L = xbar - E \n" ); document.write( "L = 117 - 4.059155 \n" ); document.write( "L = 112.940845 \n" ); document.write( "L = 112.94 \n" ); document.write( "and \n" ); document.write( "U = upper boundary \n" ); document.write( "U = xbar + E \n" ); document.write( "U = 117 + 4.059155 \n" ); document.write( "U = 121.059155 \n" ); document.write( "U = 121.06\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The 90% confidence interval for the population mean is 112.94 < mu < 121.06 \n" ); document.write( "That is in the format L < mu < U\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It can be condensed to the format (L, U) and we get (112.94, 121.06) \n" ); document.write( "This second format is more common, but the drawback is that we don't know what population parameter we're estimating (unless further context is given).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Interpretation: We are 90% confident the population mean price of a home theater system is somewhere between $112.94 and $121.06\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll repeat the process but this time for a 95% confidence interval.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "At 95% confidence, the z critical value is roughly z = 1.96 \n" ); document.write( "Refer to that table I mentioned earlier.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The other input values are the same as before. \n" ); document.write( "E = margin of error \n" ); document.write( "E = z*sigma/sqrt(n) \n" ); document.write( "E = 1.96*18.30/sqrt(55) \n" ); document.write( "E = 4.83644013336631 \n" ); document.write( "E = 4.836440 \n" ); document.write( "The margin of error is larger than previously calculated. \n" ); document.write( "This will widen the confidence interval.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "L = lower boundary \n" ); document.write( "L = xbar - E \n" ); document.write( "L = 117 - 4.836440 \n" ); document.write( "L = 112.16356 \n" ); document.write( "L = 112.16 \n" ); document.write( "and \n" ); document.write( "U = upper boundary \n" ); document.write( "U = xbar + E \n" ); document.write( "U = 117 + 4.836440 \n" ); document.write( "U = 121.83644 \n" ); document.write( "U = 121.84\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The 95% confidence interval can be expressed as 112.16 < mu < 121.84 \n" ); document.write( "Or can be expressed as (112.16, 121.84)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Interpretation: We are 95% confident the population mean price of a home theater system is somewhere between $112.16 and $121.84\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's compare the confidence intervals. \n" ); document.write( "90% confidence interval: (112.94, 121.06) \n" ); document.write( "95% confidence interval: (112.16, 121.84) \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The 95% confidence interval is wider because the margin of error is larger. \n" ); document.write( "The more confident we get, the wider the interval will become.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Imagine you are looking for a certain rare species of fish in the ocean. \n" ); document.write( "To be more confident you caught the fish you want, you could increase the size of the net. \n" ); document.write( "The size of the net is analogous to the width of the confidence interval. \n" ); document.write( " \n" ); document.write( " |