document.write( "Question 1201612: You are given the sample mean and the population standard deviation. Use this information to construct the​ 90% and​ 95% confidence intervals for the population mean. Interpret the results and compare the widths of the confidence intervals. If​ convenient, use technology to construct the confidence intervals.\r
\n" ); document.write( "\n" ); document.write( "A random sample of 55 home theater systems has a mean price of ​$117.00. Assume the population standard deviation is ​$18.30.
\n" ); document.write( "

Algebra.Com's Answer #836075 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answers:
\n" ); document.write( "90% confidence interval is (112.94, 121.06)
\n" ); document.write( "95% confidence interval is (112.16, 121.84)
\n" ); document.write( "The 95% confidence interval is wider.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Further explanation is down below.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "====================================================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At 90% confidence, the z critical value is roughly z = 1.645
\n" ); document.write( "Use a table like this
\n" ); document.write( "https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
\n" ); document.write( "to get that value. Look at the bottom row labeled \"Z\" and above the 90% confidence level.
\n" ); document.write( "A stats calculator can also compute this value.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "xbar = 117.00 = sample mean
\n" ); document.write( "sigma = 18.30 = population standard deviation
\n" ); document.write( "n = 55 = sample size\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's compute the margin of error
\n" ); document.write( "E = margin of error
\n" ); document.write( "E = z*sigma/sqrt(n)
\n" ); document.write( "E = 1.645*18.30/sqrt(55)
\n" ); document.write( "E = 4.05915511193244
\n" ); document.write( "E = 4.059155\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then,
\n" ); document.write( "L = lower boundary
\n" ); document.write( "L = xbar - E
\n" ); document.write( "L = 117 - 4.059155
\n" ); document.write( "L = 112.940845
\n" ); document.write( "L = 112.94
\n" ); document.write( "and
\n" ); document.write( "U = upper boundary
\n" ); document.write( "U = xbar + E
\n" ); document.write( "U = 117 + 4.059155
\n" ); document.write( "U = 121.059155
\n" ); document.write( "U = 121.06\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The 90% confidence interval for the population mean is 112.94 < mu < 121.06
\n" ); document.write( "That is in the format L < mu < U\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It can be condensed to the format (L, U) and we get (112.94, 121.06)
\n" ); document.write( "This second format is more common, but the drawback is that we don't know what population parameter we're estimating (unless further context is given).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Interpretation: We are 90% confident the population mean price of a home theater system is somewhere between $112.94 and $121.06\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We'll repeat the process but this time for a 95% confidence interval.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At 95% confidence, the z critical value is roughly z = 1.96
\n" ); document.write( "Refer to that table I mentioned earlier.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The other input values are the same as before.
\n" ); document.write( "E = margin of error
\n" ); document.write( "E = z*sigma/sqrt(n)
\n" ); document.write( "E = 1.96*18.30/sqrt(55)
\n" ); document.write( "E = 4.83644013336631
\n" ); document.write( "E = 4.836440
\n" ); document.write( "The margin of error is larger than previously calculated.
\n" ); document.write( "This will widen the confidence interval.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L = lower boundary
\n" ); document.write( "L = xbar - E
\n" ); document.write( "L = 117 - 4.836440
\n" ); document.write( "L = 112.16356
\n" ); document.write( "L = 112.16
\n" ); document.write( "and
\n" ); document.write( "U = upper boundary
\n" ); document.write( "U = xbar + E
\n" ); document.write( "U = 117 + 4.836440
\n" ); document.write( "U = 121.83644
\n" ); document.write( "U = 121.84\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The 95% confidence interval can be expressed as 112.16 < mu < 121.84
\n" ); document.write( "Or can be expressed as (112.16, 121.84)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Interpretation: We are 95% confident the population mean price of a home theater system is somewhere between $112.16 and $121.84\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's compare the confidence intervals.
\n" ); document.write( "90% confidence interval: (112.94, 121.06)
\n" ); document.write( "95% confidence interval: (112.16, 121.84)
\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "The 95% confidence interval is wider because the margin of error is larger.
\n" ); document.write( "The more confident we get, the wider the interval will become.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Imagine you are looking for a certain rare species of fish in the ocean.
\n" ); document.write( "To be more confident you caught the fish you want, you could increase the size of the net.
\n" ); document.write( "The size of the net is analogous to the width of the confidence interval.
\n" ); document.write( "
\n" ); document.write( "
\n" );