document.write( "Question 1201590: prove that, for square matrices A and B, AB=BA if and only if(A-B)(A+B)=A²-B².
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #836047 by ikleyn(52782)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "(A-B)*(A+B) = A*A - B*A + A*B - B*B = (A^2 - B^2) + (A*B - B*A).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From this identity, which is valid for all matrices ALWAYS, you can easily conclude that \r\n" ); document.write( "\r\n" ); document.write( " (A-B)*(A+B) = A^2 - B^2 if and only if A*B - B*A = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It is the same as to say that \r\n" ); document.write( "\r\n" ); document.write( " (A-B)*(A+B) = A^2 - B^2 if and only if A*B = B*A.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |