document.write( "Question 1201590: prove that, for square matrices A and B, AB=BA if and only if(A-B)(A+B)=A²-B².
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #836044 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The template P if and only if Q breaks into two pieces
\n" ); document.write( "For this problem, \n" ); document.write( "AB = BA if and only if (A-B)(A+B) = A^2-B^2 \n" ); document.write( "breaks into
\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part 1) \n" ); document.write( "If AB = BA, then (A-B)(A+B) = A^2-B^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll start with (A-B)(A+B) and try to reach A^2-B^2 through use of AB = BA\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(A-B)(A+B) = A(A+B)-B(A+B) \n" ); document.write( "(A-B)(A+B) = (A^2+AB)+(-BA-B^2) \n" ); document.write( "(A-B)(A+B) = (A^2+AB)+(-AB-B^2) ... use AB = BA \n" ); document.write( "(A-B)(A+B) = A^2+(AB-AB)-B^2 \n" ); document.write( "(A-B)(A+B) = A^2+0*AB-B^2 \n" ); document.write( "(A-B)(A+B) = A^2+0-B^2 \n" ); document.write( "(A-B)(A+B) = A^2-B^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have proven that if AB=BA, then (A-B)(A+B) leads to A^2-B^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In other words, if AB=BA, then (A-B)(A+B) = A^2-B^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Part 2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If (A-B)(A+B) = A^2-B^2, then AB = BA\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(A-B)(A+B) = A^2-B^2 \n" ); document.write( "A(A+B)-B(A+B) = A^2-B^2 \n" ); document.write( "(A^2+AB)+(-BA-B^2) = A^2-B^2 \n" ); document.write( "A^2+(AB-BA)-B^2 = A^2-B^2 \n" ); document.write( "(AB-BA)-B^2 = -B^2 \n" ); document.write( "AB-BA = 0 \n" ); document.write( "AB = BA\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The second portion of the \"if and only if\" statement has been confirmed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, overall we can say AB = BA if and only if (A-B)(A+B) = A^2-B^2 \n" ); document.write( "Matrices A and B must be square, and the same size. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |